Inhibition of cellular proliferation and enhancement of hydrogen peroxide production in fibrosarcoma cell line by weak radio frequency magnetic fields

2014 ◽  
Vol 35 (8) ◽  
pp. 598-602 ◽  
Author(s):  
Pablo R. Castello ◽  
Iain Hill ◽  
Frank Sivo ◽  
Lucas Portelli ◽  
Frank Barnes ◽  
...  
2018 ◽  
Vol 18 (3) ◽  
pp. 287-294 ◽  
Author(s):  
Gustavo Alencastro Veiga Cruzeiro ◽  
Maristella Bergamo dos Reis ◽  
Vanessa Silva Silveira ◽  
Regia Caroline Peixoto Lira ◽  
Carlos Gilberto Carlotti Jr ◽  
...  

Background: Genetic and epigenetic modifications are closely related to tumor initiation and progression and can provide guidance for understanding tumor functioning, potentially leading to the discovery of new therapies. Studies have associated hypoxia-related genes to tumor progression and chemo/radioresistance in brain tumors. Information on the expression profile of hypoxiarelated genes in pediatric medulloblastoma, although scarce, may reveal relevant information that could support treatment decisions. Objective: Our study focused on evaluation the of CA9, CA12, HIF1A, EPAS1, SCL2A1 and VEGF genes in 41 pediatric fresh-frozen medulloblastoma sample. Additionally, we analyzed the effect of hypoxia and normoxia in the pediatric medulloblastoma cell-line UW402. Furthermore, we assessed the effects of HIF1A knockdown in cell-proliferation and methylation levels of genes related to hypoxia, apoptosis and autophagy. Method: qPCR was performed to evaluate mRNA levels, and Western blot to confirm HIF1A silencing in both patient samples and cell line. Pyrosequencing was performed to asses the methylation levels after HIF1A knockdown in the UW402 cell line. Results: A higher HIF1A mRNA level was observed in MB patients when compared to the cerebellum (non-tumor match). In UW402 MB cell-line, chemically induced hypoxic resulted in an increase of mRNA levels of HIF1A, VEGF, SCL2A1 and CA9 genes. Additionally, HIF1A knockdown induced a decrease in the expression of hypoxia related genes and a decrease of 30% in cell proliferation was also observed. Also, a significant increase in the methylation of ATG16L1 promoter and decrease in the methylation of EPAS1 promoter were observed after HIF1A knockdown. Conclusion: HIF1A knockdown in medulloblastoma cells lead to decreased cellular proliferation, suggesting that HIF1A can be a potential therapeutic target to be explored in the medulloblastoma. However, the mechanisms behind HIF1A protein stabilization and function are very complex and more data need to be generated to potentially use HIF1A as a therapeutical target.


2017 ◽  
Vol 12 (10) ◽  
pp. 1111-1119 ◽  
Author(s):  
Kojiro Fuku ◽  
Yuta Miyase ◽  
Yugo Miseki ◽  
Takashi Funaki ◽  
Takahiro Gunji ◽  
...  

Author(s):  
Shagufta Taqvi ◽  
Eijaz Ahmed Bhat ◽  
Nasreena Sajjad ◽  
Jamal S.M. Sabir ◽  
Aleem Qureshi ◽  
...  

Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 925-932 ◽  
Author(s):  
Michael C. Heinrich ◽  
Diana J. Griffith ◽  
Brian J. Druker ◽  
Cecily L. Wait ◽  
Kristen A. Ott ◽  
...  

Abstract STI 571 (formerly known as CGP 57148B) is a known inhibitor of the c-abl, bcr-abl, and platelet-derived growth-factor receptor (PDGFR) tyrosine kinases. This compound is being evaluated in clinical trials for the treatment of chronic myelogenous leukemia. We sought to extend the activity profile of STI 571 by testing its ability to inhibit the tyrosine kinase activity of c-kit, a receptor structurally similar to PDGFR. We treated a c-kit expressing a human myeloid leukemia cell line, M-07e, with STI 571 before stimulation with Steel factor (SLF). STI 571 inhibited c-kit autophosphorylation, activation of mitogen-activated protein (MAP) kinase, and activation of Akt without altering total protein levels of c-kit, MAP kinase, or Akt. The concentration that produced 50% inhibition for these effects was approximately 100 nmol/L. STI 571 also significantly decreased SLF-dependent growth of M-07e cells in a dose-dependent manner and blocked the antiapoptotic activity of SLF. In contrast, the compound had no effect on MAP kinase activation or cellular proliferation in response to granulocyte-macrophage colony-stimulating factor. We also tested the activity of STI 571 in a human mast cell leukemia cell line (HMC-1), which has an activated mutant form of c-kit. STI 571 had a more potent inhibitory effect on the kinase activity of this mutant receptor than it did on ligand-dependent activation of the wild-type receptor. These findings show that STI 571 selectively inhibits c-kit tyrosine kinase activity and downstream activation of target proteins involved in cellular proliferation and survival. This compound may be useful in treating cancers associated with increased c-kit kinase activity.


Sign in / Sign up

Export Citation Format

Share Document