Protein partners of KCTD proteins provide insights about their functional roles in cell differentiation and vertebrate development

BioEssays ◽  
2013 ◽  
Vol 35 (7) ◽  
pp. 586-596 ◽  
Author(s):  
Mikhail Skoblov ◽  
Andrey Marakhonov ◽  
Ekaterina Marakasova ◽  
Anna Guskova ◽  
Vikas Chandhoke ◽  
...  
1988 ◽  
Vol 82 (1) ◽  
pp. 316-321 ◽  
Author(s):  
T Tanaka ◽  
O Saiki ◽  
S Doi ◽  
M Suemura ◽  
S Negoro ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4679
Author(s):  
Inna Vasil’eva ◽  
Nina Moor ◽  
Rashid Anarbaev ◽  
Mikhail Kutuzov ◽  
Olga Lavrik

Poly(ADP-ribose) polymerase 2 (PARP2) participates in base excision repair (BER) alongside PARP1, but its functions are still under study. Here, we characterize binding affinities of PARP2 for other BER proteins (PARP1, APE1, Polβ, and XRCC1) and oligomerization states of the homo- and hetero-associated complexes using fluorescence-based and light scattering techniques. To compare PARP2 and PARP1 in the efficiency of PAR synthesis, in the absence and presence of protein partners, the size of PARP2 PARylated in various reaction conditions was measured. Unlike PARP1, PARP2 forms more dynamic complexes with common protein partners, and their stability is effectively modulated by DNA intermediates. Apparent binding affinity constants determined for homo- and hetero-oligomerized PARP1 and PARP2 provide evidence that the major form of PARP2 at excessive PARP1 level is their heterocomplex. Autoregulation of PAR elongation at high PARP and NAD+ concentrations is stronger for PARP2 than for PARP1, and the activity of PARP2 is more effectively inhibited by XRCC1. Moreover, the activity of both PARP1 and PARP2 is suppressed upon their heteroPARylation. Taken together, our findings suggest that PARP2 can function differently in BER, promoting XRCC1-dependent repair (similarly to PARP1) or an alternative XRCC1-independent mechanism via hetero-oligomerization with PARP1.


1993 ◽  
Vol 35 (3) ◽  
pp. 349-356 ◽  
Author(s):  
Satoshi Yonezawa ◽  
Yukari Maejima ◽  
Naoki Hagiwara ◽  
Tomoko Aratani ◽  
Ryujiro Shoji ◽  
...  

2012 ◽  
Vol 303 (12) ◽  
pp. C1207-C1217 ◽  
Author(s):  
Yi-Chun Yeh ◽  
Hsi-Hui Lin ◽  
Ming-Jer Tang

As increase in collagen deposition is no longer taken as simply a consequence but, rather, an inducer of disease progression; therefore, the understanding of collagen signal transduction is fundamentally important. Cells contain at least two types of collagen receptors: integrins and discoidin domain receptors (DDRs). The integrin heterodimers α1β1, α2β1, α10β1, and α11β1 are recognized as the non-tyrosine kinase collagen receptors. DDR1 and 2, the tyrosine kinase receptors of collagen, are specifically expressed in epithelium and mesenchyme, respectively. While integrin β1 and DDR1 are both required for cell adhesion on collagen, their roles in epithelial cell differentiation during development and disease progression seem to counteract each other, with integrin β1 favoring epithelium mesenchyme transition (EMT) and DDR1 inducing epithelial cell differentiation. The in vitro evidence shows that the integrin β1 and DDR1 exert opposing actions in regulation of membrane stability of E-cadherin, which itself is a critical regulator of epithelial cell differentiation. Here, we review the functional roles of integrin β1 and DDR1 in regulation of epithelial cell differentiation during development and disease progression, and explore the underlining mechanisms regarding to the regulation of membrane stability of E-cadherin.


2021 ◽  
Vol 22 (16) ◽  
pp. 8951
Author(s):  
Anabelle Planques ◽  
Vanessa Oliveira Moreira ◽  
David Benacom ◽  
Clémence Bernard ◽  
Laurent Jourdren ◽  
...  

The choroid plexus is an important blood barrier that secretes cerebrospinal fluid, which essential for embryonic brain development and adult brain homeostasis. The OTX2 homeoprotein is a transcription factor that is critical for choroid plexus development and remains highly expressed in adult choroid plexus. Through RNA sequencing analyses of constitutive and conditional knockdown adult mouse models, we reveal putative functional roles for OTX2 in adult choroid plexus function, including cell signaling and adhesion, and show that OTX2 regulates the expression of factors that are secreted into the cerebrospinal fluid, notably transthyretin. We also show that Otx2 expression impacts choroid plexus immune and stress responses, and affects splicing, leading to changes in the mRNA isoforms of proteins that are implicated in the oxidative stress response and DNA repair. Through mass spectrometry analysis of OTX2 protein partners in the choroid plexus, and in known non-cell-autonomous target regions, such as the visual cortex and subventricular zone, we identify putative targets that are involved in cell adhesion, chromatin structure, and RNA processing. Thus, OTX2 retains important roles for regulating choroid plexus function and brain homeostasis throughout life.


2016 ◽  
Vol 473 (13) ◽  
pp. 1831-1844 ◽  
Author(s):  
Mohamad Rima ◽  
Marwa Daghsni ◽  
Ziad Fajloun ◽  
Ridha M'rad ◽  
Juan L. Brusés ◽  
...  

Calcium plays a key role in cell signalling by its intervention in a wide range of physiological processes. Its entry into cells occurs mainly via voltage-gated calcium channels (VGCC), which are found not only in the plasma membrane of excitable cells but also in cells insensitive to electrical signals. VGCC are composed of different subunits, α1, β, α2δ and γ, among which the cytosolic β subunit (Cavβ) controls the trafficking of the channel to the plasma membrane, its regulation and its gating properties. For many years, these were the main functions associated with Cavβ. However, a growing number of proteins have been found to interact with Cavβ, emphasizing the multifunctional role of this versatile protein. Interestingly, some of the newly assigned functions of Cavβ are independent of its role in the regulation of VGCC, and thus further increase its functional roles. Based on the identity of Cavβ protein partners, this review emphasizes the diverse cellular functions of Cavβ and summarizes both past findings as well as recent progress in the understanding of VGCC.


Author(s):  
H. Alasam

The possibility that intrathymic T-cell differentiation involves stem cell-lymphoid interactions in embryos led us to study the ultrastructure of epithelial cell in normal embryonic thymus. Studies in adult thymus showed that it produces several peptides that induce T-cell differentiation. Several of them have been chemically characterized, such as thymosin α 1, thymopoietin, thymic humoral factor or the serum thymic factor. It was suggested that most of these factors are secreted by populations of A and B-epithelial cells.Embryonic materials were obtained from inbred matings of Swiss Albino mice. Thymuses were disected from embryos 17 days old and prepared for transmission electron microscopy. Our studies showed that embryonic thymus at this stage contains undifferentiated and differentiated epithelial cells, large lymphoblasts, medium and few small lymphocytes (Fig. 5). No differences were found between cortical and medullary epithelial cells, in contrast to the findings of Van Vliet et al,. Epithelial cells were mostly of the A-type with low electron density in both cytoplasm and nucleus. However few B-type with high electron density were also found (Fig. 7).


Sign in / Sign up

Export Citation Format

Share Document