Internet-based teleangiography: An indispensable tool for the interventional cardiologist

2005 ◽  
Vol 64 (2) ◽  
pp. 173-181 ◽  
Author(s):  
Lowell F. Satler ◽  
Kenneth M. Kent ◽  
Augusto D. Pichard ◽  
William O. Suddath ◽  
John R. Laird ◽  
...  
Author(s):  
William Hoppitt ◽  
Kevin N. Laland

Many animals, including humans, acquire valuable skills and knowledge by copying others. Scientists refer to this as social learning. It is one of the most exciting and rapidly developing areas of behavioral research and sits at the interface of many academic disciplines, including biology, experimental psychology, economics, and cognitive neuroscience. This book provides a comprehensive, practical guide to the research methods of this important emerging field. It defines the mechanisms thought to underlie social learning and demonstrate how to distinguish them experimentally in the laboratory. It presents techniques for detecting and quantifying social learning in nature, including statistical modeling of the spatial distribution of behavior traits. It also describes the latest theory and empirical findings on social learning strategies, and introduces readers to mathematical methods and models used in the study of cultural evolution. This book is an indispensable tool for researchers and an essential primer for students.


2018 ◽  
Author(s):  
Jonathan De Roo ◽  
Nuri Yazdani ◽  
Emile Drijvers ◽  
Alessandro Lauria ◽  
Jorick Maes ◽  
...  

<p>Although solvent-ligand interactions play a major role in nanocrystal synthesis, dispersion formulation and assembly, there is currently no direct method to study this. Here we examine the broadening of <sup>1</sup>H NMR resonances associated with bound ligands, and turn this poorly understood descriptor into a tool to assess solvent-ligand interactions. We show that the line broadening has both a homogeneous and a heterogeneous component. The former is nanocrystal-size dependent and the latter results from solvent-ligand interactions. Our model is supported by experimental and theoretical evidence that correlates broad NMR lines with poor ligand solvation. This correlation is found across a wide range of solvents, extending from water to hexane, for both hydrophobic and hydrophilic ligand types, and for a multitude of oxide, sulfide and selenide nanocrystals. Our findings thus put forward NMR line shape analysis as an indispensable tool to form, investigate and manipulate nanocolloids.</p>


2019 ◽  
Author(s):  
Nishant Singh ◽  
Bruno Lainer ◽  
Georges Formon ◽  
Serena De Piccoli ◽  
Thomas Hermans

Nature uses catalysis as an indispensable tool to control assembly and reaction cycles in vital non-equilibrium supramolecular processes. For instance, enzymatic methionine oxidation regulates actin (dis)assembly, and catalytic guanosine triphosphate hydrolysis is found in tubulin (dis)assembly. Here we present a completely artificial reaction cycle which is driven by a chemical fuel that is catalytically obtained from a ‘pre-fuel’. The reaction cycle controls the disassembly and re-assembly of a hydrogel, where the rate of pre-fuel turnover dictates the morphology as well as the mechanical properties. By adding additional fresh aliquots of fuel and removing waste, the hydrogels can be re-programmed time after time. Overall, we show how catalysis can control fuel generation to control reaction / assembly kinetics and materials properties in life-like non-equilibrium systems.


2020 ◽  
Vol 501 (1) ◽  
pp. L71-L75
Author(s):  
Cornelius Rampf ◽  
Oliver Hahn

ABSTRACT Perturbation theory is an indispensable tool for studying the cosmic large-scale structure, and establishing its limits is therefore of utmost importance. One crucial limitation of perturbation theory is shell-crossing, which is the instance when cold-dark-matter trajectories intersect for the first time. We investigate Lagrangian perturbation theory (LPT) at very high orders in the vicinity of the first shell-crossing for random initial data in a realistic three-dimensional Universe. For this, we have numerically implemented the all-order recursion relations for the matter trajectories, from which the convergence of the LPT series at shell-crossing is established. Convergence studies performed at large orders reveal the nature of the convergence-limiting singularities. These singularities are not the well-known density singularities at shell-crossing but occur at later times when LPT already ceased to provide physically meaningful results.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1568
Author(s):  
Bernhard Wunsch ◽  
Stanislav Skibin ◽  
Ville Forsström ◽  
Ivica Stevanovic

EMC simulations are an indispensable tool to analyze EMC noise propagation in power converters and to assess the best filtering options. In this paper, we first show how to set up EMC simulations of power converters and then we demonstrate their use on the example of an industrial AC motor drive. Broadband models of key power converter components are reviewed and combined into a circuit model of the complete power converter setup enabling detailed EMC analysis. The approach is demonstrated by analyzing the conducted noise emissions of a 75 kW power converter driving a 45 kW motor. Based on the simulations, the critical impedances, the dominant noise propagation, and the most efficient filter component and location within the system are identified. For the analyzed system, maxima of EMC noise are caused by resonances of the long motor cable and can be accurately predicted as functions of type, length, and layout of the motor cable. The common-mode noise at the LISN is shown to have a dominant contribution caused by magnetic coupling between the noisy motor side and the AC input side of the drive. All the predictions are validated by measurements and highlight the benefit of simulation-based EMC analysis and filter design.


Genetics ◽  
1993 ◽  
Vol 135 (4) ◽  
pp. 1063-1076 ◽  
Author(s):  
D Smith ◽  
J Wohlgemuth ◽  
B R Calvi ◽  
I Franklin ◽  
W M Gelbart

Abstract P element enhancer trapping has become an indispensable tool in the analysis of the Drosophila melanogaster genome. However, there is great variation in the mutability of loci by these elements such that some loci are relatively refractory to insertion. We have developed the hobo transposable element for use in enhancer trapping and we describe the results of a hobo enhancer trap screen. In addition, we present evidence that a hobo enhancer trap element has a pattern of insertion into the genome that is different from the distribution of P elements in the available database. Hence, hobo insertion may facilitate access to genes resistant to P element insertion.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 852
Author(s):  
Viacheslav V. Senichkin ◽  
Evgeniia A. Prokhorova ◽  
Boris Zhivotovsky ◽  
Gelina S. Kopeina

Subcellular fractionation approaches remain an indispensable tool among a large number of biochemical methods to facilitate the study of specific intracellular events and characterization of protein functions. During apoptosis, the best-known form of programmed cell death, numerous proteins are translocated into and from the nucleus. Therefore, suitable biochemical techniques for the subcellular fractionation of apoptotic cells are required. However, apoptotic bodies and cell fragments might contaminate the fractions upon using the standard protocols. Here, we compared different nucleus/cytoplasm fractionation methods and selected the best-suited approach for the separation of nuclear and cytoplasmic contents. The described methodology is based on stepwise lysis of cells and washing of the resulting nuclei using non-ionic detergents, such as NP-40. Next, we validated this approach for fractionation of cells treated with various apoptotic stimuli. Finally, we demonstrated that nuclear fraction could be further subdivided into nucleosolic and insoluble subfractions, which is crucial for the isolation and functional studies of various proteins. Altogether, we developed a method for simple and efficient nucleus/cytoplasm fractionation of both normal and apoptotic cells.


2019 ◽  
Vol 116 (13) ◽  
pp. 5979-5984 ◽  
Author(s):  
Yahui Ji ◽  
Dongyuan Qi ◽  
Linmei Li ◽  
Haoran Su ◽  
Xiaojie Li ◽  
...  

Extracellular vesicles (EVs) are important intercellular mediators regulating health and diseases. Conventional methods for EV surface marker profiling, which was based on population measurements, masked the cell-to-cell heterogeneity in the quantity and phenotypes of EV secretion. Herein, by using spatially patterned antibody barcodes, we realized multiplexed profiling of single-cell EV secretion from more than 1,000 single cells simultaneously. Applying this platform to profile human oral squamous cell carcinoma (OSCC) cell lines led to a deep understanding of previously undifferentiated single-cell heterogeneity underlying EV secretion. Notably, we observed that the decrement of certain EV phenotypes (e.g.,CD63+EV) was associated with the invasive feature of both OSCC cell lines and primary OSCC cells. We also realized multiplexed detection of EV secretion and cytokines secretion simultaneously from the same single cells to investigate the multidimensional spectrum of cellular communications, from which we resolved tiered functional subgroups with distinct secretion profiles by visualized clustering and principal component analysis. In particular, we found that different cell subgroups dominated EV secretion and cytokine secretion. The technology introduced here enables a comprehensive evaluation of EV secretion heterogeneity at single-cell level, which may become an indispensable tool to complement current single-cell analysis and EV research.


2014 ◽  
Vol 621 ◽  
pp. 558-563
Author(s):  
X.M. Li ◽  
Ya Lin Shen ◽  
L.H. Zhu

On the basis of analyzing assembly process of main structural components in CA6140 lathe, 3D models for those components were established with CAD software UGNX6.0. Virtual assembly and motion simulation of the structure parts were performed with virtual technology. A set of virtual assembly system of CA6140 engine lathe was developed with programming software Visual Basic 6.0. It contains six main modules about spindle box, feed box, apron, tailstock, turret, etc. Dynamic simulation and motion simulation of the corresponding components in entity lathe can be realized, respectively. And also, mechanical structure, working principle, assembly relation between different components and motion transmission process of the lathe can be realistically reproduced with the system. This virtual assembly system not only can be used to analyze and transform old products, but also can be used in new products development, and to some extent, can be used to replace the prototype. It is an indispensable tool in the employee training and mechanical engineering activities.


Sign in / Sign up

Export Citation Format

Share Document