Effect of a heat pretreatment on the structure and properties of carbon supports for carbon membranes

2017 ◽  
Vol 95 (11) ◽  
pp. 2112-2119 ◽  
Author(s):  
Shanshan Liu ◽  
Bing Zhang ◽  
Yuan Jiang ◽  
Yonghong Wu ◽  
Tonghua Wang ◽  
...  
2005 ◽  
Vol 109 (40) ◽  
pp. 18741-18748 ◽  
Author(s):  
Youchang Xiao ◽  
Tai-Shung Chung ◽  
Mei Lin Chng ◽  
Shouji Tamai ◽  
Akihiro Yamaguchi

Author(s):  
F. Thoma ◽  
TH. Koller

Under a variety of electron microscope specimen preparation techniques different forms of chromatin appearance can be distinguished: beads-on-a-string, a 100 Å nucleofilament, a 250 Å fiber and a compact 300 to 500 Å fiber.Using a standardized specimen preparation technique we wanted to find out whether there is any relation between these different forms of chromatin or not. We show that with increasing ionic strength a chromatin fiber consisting of a row of nucleo- somes progressively folds up into a solenoid-like structure with a diameter of about 300 Å.For the preparation of chromatin for electron microscopy the avoidance of stretching artifacts during adsorption to the carbon supports is of utmost importance. The samples are fixed with 0.1% glutaraldehyde at 4°C for at least 12 hrs. The material was usually examined between 24 and 48 hrs after the onset of fixation.


Author(s):  
Ernest L. Hall ◽  
Shyh-Chin Huang

Addition of interstitial elements to γ-TiAl alloys is currently being explored as a method for improving the properties of these alloys. Previous work in which a number of interstitial elements were studied showed that boron was particularly effective in refining the grain size in castings, and led to enhanced strength while maintaining reasonable ductility. Other investigators have shown that B in γ-TiAl alloys tends to promote the formation of TiB2 as a second phase. In this study, the microstructure of Bcontaining TiAl alloys was examined in detail in order to describe the mechanism by which B alters the structure and properties of these alloys.


Author(s):  
E. Baer

The most advanced macromolecular materials are found in plants and animals, and certainly the connective tissues in mammals are amongst the most advanced macromolecular composites known to mankind. The efficient use of collagen, a fibrous protein, in the design of both soft and hard connective tissues is worthy of comment. Very crudely, in bone collagen serves as a highly efficient binder for the inorganic hydroxyappatite which stiffens the structure. The interactions between the organic fiber of collagen and the inorganic material seem to occur at the nano (scale) level of organization. Epitatic crystallization of the inorganic phase on the fibers has been reported to give a highly anisotropic, stress responsive, structure. Soft connective tissues also have sophisticated oriented hierarchical structures. The collagen fibers are “glued” together by a highly hydrated gel-like proteoglycan matrix. One of the simplest structures of this type is tendon which functions primarily in uniaxial tension as a reinforced elastomeric cable between muscle and bone.


Author(s):  
Bernd Tesche ◽  
Tobias Schilling

The objective of our work is to determine:a) whether both of the imaging methods (TEM, STM) yield comparable data andb) which method is better suited for a reliable structure analysis of microclusters smaller than 1.5 nm, where a deviation of the bulk structure is expected.The silver was evaporated in a bell-jar system (p 10−5 pa) and deposited onto a 6 nm thick amorphous carbon film and a freshly cleaved highly oriented pyrolytic graphite (HOPG).The average deposited Ag thickness is 0.1 nm, controlled by a quartz crystal microbalance at a deposition rate of 0.02 nm/sec. The high resolution TEM investigations (100 kV) were executed by a hollow-cone illumination (HCI). For the STM investigations a commercial STM was used. With special vibration isolation we achieved a resolution of 0.06 nm (inserted diffraction image in Fig. 1c). The carbon film shows the remarkable reduction in noise by using HCI (Fig. 1a). The HOPG substrate (Fig. 1b), cleaved in sheets thinner than 30 nm for the TEM investigations, shows the typical arrangement of a nearly perfect stacking order and varying degrees of rotational disorder (i.e. artificial single crystals). The STM image (Fig. 1c) demonstrates the high degree of order in HOPG with atomic resolution.


Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


1991 ◽  
Vol 88 ◽  
pp. 411-420 ◽  
Author(s):  
D Peeters ◽  
G Leroy

Sign in / Sign up

Export Citation Format

Share Document