Litter mass, deposition rate, and decomposition in nitrogen‐fertilized or grass–legume grazing systems

Crop Science ◽  
2021 ◽  
Author(s):  
David M. Jaramillo ◽  
Jose C. B. Dubeux ◽  
Lynn Sollenberger ◽  
Cheryl Mackowiak ◽  
Joao M. B. Vendramini ◽  
...  
Crop Science ◽  
2006 ◽  
Vol 46 (3) ◽  
pp. 1299-1304 ◽  
Author(s):  
J. C. B. Dubeux ◽  
L. E. Sollenberger ◽  
J. M. B. Vendramini ◽  
R. L. Stewart ◽  
S. M. Interrante

Author(s):  
T.E. Pratt ◽  
R.W. Vook

(111) oriented thin monocrystalline Ni films have been prepared by vacuum evaporation and examined by transmission electron microscopy and electron diffraction. In high vacuum, at room temperature, a layer of NaCl was first evaporated onto a freshly air-cleaved muscovite substrate clamped to a copper block with attached heater and thermocouple. Then, at various substrate temperatures, with other parameters held within a narrow range, Ni was evaporated from a tungsten filament. It had been shown previously that similar procedures would yield monocrystalline films of CU, Ag, and Au.For the films examined with respect to temperature dependent effects, typical deposition parameters were: Ni film thickness, 500-800 A; Ni deposition rate, 10 A/sec.; residual pressure, 10-6 torr; NaCl film thickness, 250 A; and NaCl deposition rate, 10 A/sec. Some additional evaporations involved higher deposition rates and lower film thicknesses.Monocrystalline films were obtained with substrate temperatures above 500° C. Below 450° C, the films were polycrystalline with a strong (111) preferred orientation.


Author(s):  
R. W. Vook ◽  
R. Cook ◽  
R. Ziemer

During recent experiments on Au films, a qualitative correlation between hole formation and deposition rate was observed. These early studies were concerned with films 80 to 1000A thick deposited on glass at -185°C and annealed at 170°C. In the present studies this earlier work was made quantitative. Deposition rates varying between 5 and 700 A/min were used. The effects of deposition rate on hole density for two films 300 and 700A thick were investigated.Au was evaporated from an outgassed W filament located 10 cm from a glass microscope slide substrate and a quartz crystal film thickness monitor. A shutter separating the filament from the substrate and monitor made it possible to obtain a constant evaporation rate before initiating deposition. The pressure was reduced to less than 1 x 10-6 torr prior to cooling the substrate with liquid nitrogen. The substrate was cooled in 15 minutes during which the pressure continued to drop to the mid 10-7 torr range, where deposition was begun.


EDIS ◽  
2018 ◽  
Vol 2018 (5) ◽  
Author(s):  
Jose C.B. Dubeux ◽  
Nicolas DiLorenzo ◽  
Kalyn Waters ◽  
Jane C. Griffin

Florida has 915,000 beef cows and 125,000 replacement heifers (USDA, 2016). Developing these heifers so that they can become productive females in the cow herd is a tremendous investment in a cow/calf operation, an investment that takes several years to make a return. The good news is that there are options to develop heifers on forage-based programs with the possibility of reducing costs while simultaneously meeting performance targets required by the beef industry. Mild winters in Florida allows utilization of cool-season forages that can significantly enhance the performance of grazing heifers. During the warm-season, integration of forage legumes into grazing systems will provide additional nutrients to meet the performance required to develop a replacement heifer to become pregnant and enter the mature cow herd. In this document, we will propose a model for replacement heifer development, based on forage research performed in trials at the NFREC Marianna.   


Author(s):  
J. Hodgson

Recent assessments of the relative importance of stocking rate. stocking policy and grazing management on the output from pastoral systems are used as a starting point to argue the need for objective pasture assessments to aid control of livestock enterprises to meet production targets. Variations in stocking rates, stocking policy and other management practices all provide alternative means of control of pasture conditions which are the major determinants of pasture and animal performance. Understanding of the influence of pasture conditions on systems performance should provide a better basis for management control and for Communication between farmers, extension officers and researchers. Keywords: Stocking rate, pasture condition, pasture cover


Author(s):  
J.G. Jago ◽  
M.W. Woolford

There is a growing shortage of labour within the dairy industry. To address this the industry needs to attract more people and/or reduce the labour requirements on dairy farms. Current milk harvesting techniques contribute to both the labour requirements and the current labour shortage within the industry as the process is labour-intensive and necessitates long and unsociable working hours. Automated milking systems (AMS) have been in operation, albeit on a small scale, on commercial farms in Europe for a decade and may have the potential to address labour issues within the New Zealand dairy industry. A research programme has been established (The Greenfield Project) which aims to determine the feasibility of automated milking under New Zealand dairying conditions. A Fullwoods MERLIN AMS has been installed on a protoype farmlet and is successfully milking a small herd of 41 cows. Progress from the prototype Greenfields system offers considerable potential for implementing AMS in extensive grazing systems. Keywords: automated milking systems, dairy cattle, grazing, labour


2002 ◽  
Vol 715 ◽  
Author(s):  
Zhi-Feng Huang ◽  
Rashmi C. Desai

AbstractThe morphological and compositional instabilities in the heteroepitaxial strained alloy films have attracted intense interest from both experimentalists and theorists. To understand the mechanisms and properties for the generation of instabilities, we have developed a nonequilibrium, continuum model for the dislocation-free and coherent film systems. The early evolution processes of surface pro.les for both growing and postdeposition (non-growing) thin alloy films are studied through a linear stability analysis. We consider the coupling between top surface of the film and the underlying bulk, as well as the combination and interplay of different elastic effects. These e.ects are caused by filmsubstrate lattice misfit, composition dependence of film lattice constant (compositional stress), and composition dependence of both Young's and shear elastic moduli. The interplay of these factors as well as the growth temperature and deposition rate leads to rich and complicated stability results. For both the growing.lm and non-growing alloy free surface, we determine the stability conditions and diagrams for the system. These show the joint stability or instability for film morphology and compositional pro.les, as well as the asymmetry between tensile and compressive layers. The kinetic critical thickness for the onset of instability during.lm growth is also calculated, and its scaling behavior with respect to misfit strain and deposition rate determined. Our results have implications for real alloy growth systems such as SiGe and InGaAs, which agree with qualitative trends seen in recent experimental observations.


2003 ◽  
Vol 766 ◽  
Author(s):  
Kosuke Takenaka ◽  
Masao Onishi ◽  
Manabu Takenshita ◽  
Toshio Kinoshita ◽  
Kazunori Koga ◽  
...  

AbstractAn ion-assisted chemical vapor deposition method by which Cu is deposited preferentially from the bottom of trenches (anisotropic CVD) has been proposed in order to fill small via holes and trenches. By using Ar + H2 + C2H5OH[Cu(hfac)2] discharges with a ratio H2 / (H2 + Ar) = 83%, Cu is filled preferentially from the bottom of trenches without deposition on the sidewall and top surfaces. The deposition rate on the bottom surface of trenches is experimentally found to increase with decreasing its width.


Author(s):  
В. М. Жихарєв ◽  
В. Ю. Лоя ◽  
А. М. Соломон ◽  
Я. В. Грицище

Sign in / Sign up

Export Citation Format

Share Document