scholarly journals No interplay between gut microbiota composition and the lipopolysaccharide‐induced innate immune response in humans in vivo

2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Quirine LM Habes ◽  
Prokopis Konstanti ◽  
Harmke D Kiers ◽  
Rebecca M Koch ◽  
Roeland F Stolk ◽  
...  
2020 ◽  
Author(s):  
Katarina Butorac ◽  
Martina Banic ◽  
Jasna Novak ◽  
Andreja Leboš Pavunc ◽  
Ksenija Uroic ◽  
...  

Abstract Background: The influence of an S-layer-carrying strain Lactobacillus brevis SF9B and a plantaricin-producing strain Lactobacillus plantarum SF9C on the gut microbiota composition was evaluated in the rats. Considering the probiotic potential of Lb. brevis SF9B, this study aimed to examine the antibacterial activity of Lb. plantarum SF9C and potential for their in vivo colonisation, which could be the basis for the investigation of their synergistic functionality. Results: A plantaricin-encoding cluster was identified in Lb. plantarum SF9C, a strain which efficiently inhibited the growth of Listeria monocytogenes ATCC®19111™ and Staphylococcus aureus 3048. Contrary to the plantaricin-producing SF9C strain, the S-layer-carrying SF9B strain excluded Escherichia coli 3014 and Salmonella enterica serovar Typhimurium FP1 from adhesion to Caco-2 cells. Finally, DGGE analysis of the V2-V3 region of the 16S rRNA gene confirmed the transit of two selected lactobacilli through the gastrointestinal tract (GIT). Microbiome profiling via the Illumina MiSeq platform revealed the prevalence of Lactobacillus spp. in the gut microbiota of rats suggesting their colonisation potential in GIT.Conclusion: The combined application of Lb. plantarum SF9C and Lb. brevis SF9B could influence the intestinal microbiota composition, which is reflected through the increased abundance of Lactobacillus genus, but also through altered abundances of other bacterial genera, either in the model of healthy or aberrant microbiota of rats. The obtained results contributed to the functional aspects of SF9C and SF9B strains which could be incorporated in the probiotic-containing functional foods and therefore have a beneficial influence on the gut microbiota composition.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1954
Author(s):  
John-Peter Ganda Mall ◽  
Frida Fart ◽  
Julia A. Sabet ◽  
Carl Mårten Lindqvist ◽  
Ragnhild Nestestog ◽  
...  

The effect of dietary fibres on intestinal barrier function has not been well studied, especially in the elderly. We aimed to investigate the potential of the dietary fibres oat β-glucan and wheat arabinoxylan to strengthen the intestinal barrier function and counteract acute non-steroid anti-inflammatory drug (indomethacin)-induced hyperpermeability in the elderly. A general population of elderly subjects (≥65 years, n = 49) was randomised to a daily supplementation (12g/day) of oat β-glucan, arabinoxylan or placebo (maltodextrin) for six weeks. The primary outcome was change in acute indomethacin-induced intestinal permeability from baseline, assessed by an in vivo multi-sugar permeability test. Secondary outcomes were changes from baseline in: gut microbiota composition, systemic inflammatory status and self-reported health. Despite a majority of the study population (85%) showing a habitual fibre intake below the recommendation, no significant effects on acute indomethacin-induced intestinal hyperpermeability in vivo or gut microbiota composition were observed after six weeks intervention with either dietary fibre, compared to placebo.


2020 ◽  
Vol 88 (6) ◽  
Author(s):  
Jenessa A. Winston ◽  
Alissa J. Rivera ◽  
Jingwei Cai ◽  
Rajani Thanissery ◽  
Stephanie A. Montgomery ◽  
...  

ABSTRACT Clostridioides difficile infection (CDI) is associated with increasing morbidity and mortality posing an urgent threat to public health. Recurrence of CDI after successful treatment with antibiotics is high, thus necessitating discovery of novel therapeutics against this enteric pathogen. Administration of the secondary bile acid ursodeoxycholic acid (UDCA; ursodiol) inhibits the life cycles of various strains of C. difficile in vitro, suggesting that the FDA-approved formulation of UDCA, known as ursodiol, may be able to restore colonization resistance against C. difficile in vivo. However, the mechanism(s) by which ursodiol is able to restore colonization resistance against C. difficile remains unknown. Here, we confirmed that ursodiol inhibits C. difficile R20291 spore germination and outgrowth, growth, and toxin activity in a dose-dependent manner in vitro. In a murine model of CDI, exogenous administration of ursodiol resulted in significant alterations in the bile acid metabolome with little to no changes in gut microbial community structure. Ursodiol pretreatment resulted in attenuation of CDI pathogenesis early in the course of disease, which coincided with alterations in the cecal and colonic inflammatory transcriptome, bile acid-activated receptors nuclear farnesoid X receptor (FXR) and transmembrane G-protein-coupled membrane receptor 5 (TGR5), which are able to modulate the innate immune response through signaling pathways such as NF-κB. Although ursodiol pretreatment did not result in a consistent decrease in the C. difficile life cycle in vivo, it was able to attenuate an overly robust inflammatory response that is detrimental to the host during CDI. Ursodiol remains a viable nonantibiotic treatment and/or prevention strategy against CDI. Likewise, modulation of the host innate immune response via bile acid-activated receptors FXR and TGR5 represents a new potential treatment strategy for patients with CDI.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S896-S897
Author(s):  
Faris S Alnezary ◽  
Tasnuva Rashid ◽  
Khurshida Begum ◽  
Travis J Carlson ◽  
Anne J Gonzales-Luna ◽  
...  

Abstract Background Antimicrobials disrupt the gut microbiota by reducing gut microbiome diversity and quantity. Galleria mellonella provides an invertebrate model that is inexpensive, easy to maintain, and does not require specialized equipment. This study investigated the feasibility of using G. mellonella as an in vivo model to evaluate the effect of different antimicrobials on gut microbiota. Methods To determine baseline gut microbiota composition, the gut contents of G. mellonella were extracted and genomic DNA underwent shotgun meta-genomic sequencing. To determine the effect of infection and antibiotic use, 30 larvae were injected (left proleg) with ~1 × 105 colony-forming unit (cfu) of methicillin-resistant Staphylococcus aureus (MRSA) and were randomized 1:1:1 to treatment with vancomycin (20 mg/kg) or a natural antimicrobial (Nigella sativa seed oil, 70 mg/kg; NS oil), or a combination. The larvae were kept at 37°C post-infection and monitored daily for 72 hours for activity, extent of cocoon formation/growth, melanization, and survival. Two larvae from each group were randomly selected and homogenized with PBS as controls. After 24 hours of incubation, gut contents were extracted and plated for MRSA and Enterococcus cfu counts. Results Metagenomics analysis showed the gut microbiota composition of G. mellonella larvae was dominated by a subset of closely-related Enterococcus species. After 24 hours of exposure, mean Enterococcus counts were 4 × 103 cfu in the vancomycin arm and 6.2 × 104 cfu in the NS oil arm. Mean MRSA counts were 3.3 × 105 cfu in vancomycin arm and 1.5 × 104 cfu in NS oil arm. The combination of vancomycin and NS oil had higher Enterococcus counts than the vancomycin alone arm (6.3 × 104 cfu vs. 4 × 103 cfu, respectively), suggesting that NS oil may have a role in protecting the gut microbiota. Conclusion This study provides preliminary evidence to support the potential use of G. mellonella to assess the in vivo effect of a natural and synthetic antimicrobial on the gut microbiota. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 11 ◽  
Author(s):  
Eduardo Duarte-Silva ◽  
Livia H. Morais ◽  
Gerard Clarke ◽  
Wilson Savino ◽  
Christina Peixoto

Chagas disease (CD) is a tropical and still neglected disease caused by Trypanosoma cruzi that affects >8 million of people worldwide. Although limited, emerging data suggest that gut microbiota dysfunction may be a new mechanism underlying CD pathogenesis. T. cruzi infection leads to changes in the gut microbiota composition of vector insects, mice, and humans. Alterations in insect and mice microbiota due to T. cruzi have been associated with a decreased immune response against the parasite, influencing the establishment and progression of infection. Further, changes in the gut microbiota are linked with inflammatory and neuropsychiatric disorders, comorbid conditions in CD. Therefore, this review article critically analyses the current data on CD and the gut microbiota of insects, mice, and humans and discusses its importance for CD pathogenesis. An enhanced understanding of host microbiota will be critical for the development of alternative therapeutic approaches to target CD, such as gut microbiota-directed interventions.


Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 984
Author(s):  
Simões ◽  
LaVoy ◽  
Dean

Regulatory T cells (Treg) are key players in the maintenance of peripheral tolerance, preventing autoimmune diseases and restraining chronic inflammatory diseases. Evidence suggests Treg cells and NK cells have important roles in feline immunodeficiency virus (FIV) pathogenesis; however, in vivo studies investigating the interplay between these two cell populations are lacking. We previously described innate immune defects in FIV-infected cats characterized by cytokine deficits and impaired natural killer cell (NK) and NK T cell (NKT) functions. In this study, we investigated whether in vivo Treg depletion by treatment with an anti-feline CD25 monoclonal antibody would improve the innate immune response against subcutaneous challenge with Listeria monocytogenes (Lm). Treg depletion resulted in an increased overall number of cells in Lm-draining lymph nodes and increased proliferation of NK and NKT cells in FIV-infected cats. Treg depletion did not normalize expression of perforin or granzyme A by NK and NKT cells, nor did Treg depletion result in improved clearance of Lm. Thus, despite the quantitative improvements in the NK and NKT cell responses to Lm, there was no functional improvement in the early control of Lm. CD1a+ dendritic cell percentages in the lymph nodes of FIV-infected cats were lower than in specific-pathogen-free control cats and failed to upregulate CD80 even when Treg were depleted. Taken together, Treg depletion failed to improve the innate immune response of FIV-infected cats against Lm and this may be due to dendritic cell dysfunction.


2020 ◽  
Vol 8 (4) ◽  
pp. 479
Author(s):  
Valeria Garcia-Castillo ◽  
Guillermo Marcial ◽  
Leonardo Albarracín ◽  
Mikado Tomokiyo ◽  
Patricia Clua ◽  
...  

Lactobacillus fermentum UCO-979C (Lf979C) beneficially modulates the cytokine response of gastric epithelial cells and macrophages after Helicobacter pylori infection in vitro. Nevertheless, no in vivo studies were performed with this strain to confirm its beneficial immunomodulatory effects. This work evaluated whether Lf979C improves protection against H. pylori infection in mice by modulating the innate immune response. In addition, we evaluated whether its exopolysaccharide (EPS) was involved in its beneficial effects. Lf979C significantly reduced TNF-α, IL-8, and MCP-1 and augmented IFN-γ and IL-10 in the gastric mucosa of H. pylori-infected mice. The differential cytokine profile induced by Lf979C in H. pylori-infected mice correlated with an improved reduction in the pathogen gastric colonization and protection against inflammatory damage. The purified EPS of Lf979C reduced IL-8 and enhanced IL-10 levels in the gastric mucosa of infected mice, while no effect was observed for IFN-γ. This work demonstrates for the first time the in vivo ability of Lf979C to increase resistance against H. pylori infection by modulating the gastric innate immune response. In addition, we advanced knowledge of the mechanisms involved in the beneficial effects of Lf979C by demonstrating that its EPS is partially responsible for its immunomodulatory effect.


Sign in / Sign up

Export Citation Format

Share Document