serotonin signaling
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 57)

H-INDEX

27
(FIVE YEARS 4)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 130
Author(s):  
Claudia Kappen ◽  
Claudia Kruger ◽  
J. Michael Salbaum

Adverse exposures during pregnancy have been shown to contribute to susceptibility for chronic diseases in offspring. Maternal diabetes during pregnancy is associated with higher risk of pregnancy complications, structural birth defects, and cardiometabolic health impairments later in life. We showed previously in a mouse model that the placenta is smaller in diabetic pregnancies, with reduced size of the junctional zone and labyrinth. In addition, cell migration is impaired, resulting in ectopic accumulation of spongiotrophoblasts within the labyrinth. The present study had the goal to identify the mechanisms underlying the growth defects and trophoblast migration abnormalities. Based upon gene expression assays of 47 candidate genes, we were able to attribute the reduced growth of diabetic placenta to alterations in the Insulin growth factor and Serotonin signaling pathways, and provide evidence for Prostaglandin signaling deficiencies as the possible cause for abnormal trophoblast migration. Furthermore, our results reinforce the notion that the exposure to maternal diabetes has particularly pronounced effects on gene expression at midgestation time points. An implication of these findings is that mechanisms underlying developmental programming act early in pregnancy, during placenta morphogenesis, and before the conceptus switches from histiotrophic to hemotrophic nutrition.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elizabeth K. C. Schwartz ◽  
Eitan N. Sosner ◽  
Hayley E. Desmond ◽  
Stephanie J. Lum ◽  
Ji Ying Sze ◽  
...  

Food produces powerful reinforcement that can lead to overconsumption and likely contributes to the obesity epidemic. The present studies examined molecular mechanisms mediating food-induced reinforcement in the model system C. elegans. After a 1-h training session during which food (bacteria) is paired with the odorant butanone, odor preference for butanone robustly increased. Glucose mimicked this effect of bacteria. Glucose-induced odor preference was enhanced similarly by prior food withdrawal or blocking glucose metabolism in the presence of food. Food- and glucose-induced odor preference was mimicked by serotonin signaling through the serotonin type-4 (5-HT4) receptor. Dopamine (thought to act primarily through a D1-like receptor) facilitated, whereas the D2 agonist bromocriptine blocked, food- and glucose-induced odor preference. Furthermore, prior food withdrawal similarly influenced reward produced by serotonin, dopamine, or food, implying post-synaptic enhancement of sensitivity to serotonin and dopamine. These results suggest that glucose metabolism plays a key role in mediating both food-induced reinforcement and enhancement of that reinforcement by prior food withdrawal and implicate serotonergic signaling through 5-HT4 receptor in the re-enforcing properties of food.


2021 ◽  
Vol 22 (23) ◽  
pp. 12660
Author(s):  
Yo-Chia Chen ◽  
Nha-Linh Tao ◽  
Shao-Yang Hu ◽  
Hui-Yun Tsai ◽  
Sin-Chung Liao ◽  
...  

Rhizopus oryzae is a fungus used to ferment tempeh in Indonesia and is generally recognized as safe (GRAS) for human consumption by the USA FDA. We previously assessed the effect of a tempeh extract on cortisol levels in zebrafish but did not include behavioral studies. Here, we measured the GABA content in three strains of Rhizopus oryzae, two isolated by us (MHU 001 and MHU 002) and one purchased. We then investigated the effect of tempeh on cortisol and the gut microbiota in a zebrafish experimental model. GABA concentration was the highest in MHU 002 (9.712 ± 0.404 g kg−1) followed by our MHU 001 strain and the purchased one. The fish were divided into one control group fed a normal diet and three experimental groups fed soybean tempeh fermented with one of the three strains of Rhizopus oryzae. After two weeks, individual fish were subjected to unpredicted chronic stress using the novel tank diving test and the tank light–dark test. Next-generation sequencing was used to analyze gut microbial communities and RT-PCR to analyze the expression of BDNF (brain-derived neurotrophic factor) gene and of other genes involved in serotonin signaling/metabolism in gut and brain. Tempeh-fed zebrafish exhibited increased exploratory behavior (less stress) in both tank tests. They also had significantly reduced gut Proteobacteria (include E. coli) (51.90% vs. 84.97%) and significantly increased gut Actinobacteria (include Bifidobacterium spp.) (1.80% vs. 0.79%). The content of Bifidobacteriumadolescentis, a “psychobiotic”, increased ten-fold from 0.04% to 0.45%. Tempeh also increases BDNF levels in zebrafish brain. Rhizopus oryzae MHU 001 greatly improved the anti-stress effect of tempeh and microbiota composition in zebrafish gut.


Author(s):  
Stephanie S. Desrochers ◽  
Emma K. Lesko ◽  
Valerie M. Magalong ◽  
Peter D. Balsam ◽  
Katherine M. Nautiyal

Abstract Rationale Impulsive behavior is a deleterious component of a number of mental health disorders but has few targeted pharmacotherapies. One contributing factor to the difficulty in understanding the neural substrates of disordered impulsivity is the diverse presentations of impulsive behavior. Defining the behavioral and cognitive processes which contribute to different subtypes of impulsivity is important for understanding the neural underpinnings of dysregulated impulsive behavior. Methods Using a mouse model for disordered impulsivity, our goal was to identify behavioral and cognitive processes that are associated with increased impulsivity. Specifically, we were interested in the facets of impulsivity modulated by serotonin signaling. We used mice lacking the serotonin 1B receptor (5-HT1BR) and measured different types of impulsivity as well as goal-directed responding, extinction, habitual-like behavior, cue reactivity, and reward reactivity. Results Mice lacking expression of 5-HT1BR had increased levels of impulsive action, goal-directed responding, and motivation, with no differences seen in rate of extinction, development of habitual behavior, delay discounting, or effort-based discounting. Interestingly, mice lacking 5-HT1BR expression also showed an overall increase in the choice of higher value rewards, increased hedonic responses to sweet rewards, and responded more for cues that predict reward. We developed a novel paradigm to demonstrate that increasing anticipated reward value could directly increase impulsive action. Furthermore, we found that 5-HT1BR KO-induced impulsivity could be ameliorated by decreasing the reward value relative to controls, suggesting that the increased 5-HT1BR-associated impulsive action may be a result of increased reward valuation. Conclusions Taken together, these data show that the effects of serotonin on impulsive action are mediated through the modulation of hedonic value, which may alter the reward representations that motivate action. Overall, this data supports a role for reward value as an important substrate in impulsive action which may drive clinically relevant increases in impulsivity.


Author(s):  
Natalia Sánchez ◽  
Jesús Juárez-Balarezo ◽  
Marcia Olhaberry ◽  
Humberto González-Oneto ◽  
Antonia Muzard ◽  
...  

Depression is a common and debilitating mood disorder that increases in prevalence during pregnancy. Worldwide, 7 to 12% of pregnant women experience depression, in which the associated risk factors include socio-demographic, psychological, and socioeconomic variables. Maternal depression could have psychological, anatomical, and physiological consequences in the newborn. Depression has been related to a downregulation in serotonin levels in the brain. Accordingly, the most commonly prescribed pharmacotherapy is based on selective serotonin reuptake inhibitors (SSRIs), which increase local serotonin concentration. Even though the use of SSRIs has few adverse effects compared with other antidepressants, altering serotonin levels has been associated with the advent of anatomical and physiological changes in utero, leading to defects in craniofacial development, including craniosynostosis, cleft palate, and dental defects. Migration and proliferation of neural crest cells, which contribute to the formation of bone, cartilage, palate, teeth, and salivary glands in the craniofacial region, are regulated by serotonin. Specifically, craniofacial progenitor cells are affected by serotonin levels, producing a misbalance between their proliferation and differentiation. Thus, it is possible to hypothesize that craniofacial development will be affected by the changes in serotonin levels, happening during maternal depression or after the use of SSRIs, which cross the placental barrier, increasing the risk of craniofacial defects. In this review, we provide a synthesis of the current research on depression and the use of SSRI during pregnancy, and how this could be related to craniofacial defects using an interdisciplinary perspective integrating psychological, clinical, and developmental biology perspectives. We discuss the mechanisms by which serotonin could influence craniofacial development and stem/progenitor cells, proposing some transcription factors as mediators of serotonin signaling, and craniofacial stem/progenitor cell biology. We finally highlight the importance of non-pharmacological therapies for depression on fertile and pregnant women, and provide an individual analysis of the risk–benefit balance for the use of antidepressants during pregnancy


Author(s):  
Chih-Ming Chen ◽  
Chien-Chen Wu ◽  
Chin-Lin Huang ◽  
Min-Yu Chang ◽  
Shih-Hsuan Cheng ◽  
...  

AbstractLactobacillus plantarum PS128 has been reported as a psychobiotic to improve mental health through the gut–brain axis in experimental animal models. To explore its mechanism of action in the gut, this study aimed to analyze the effects of L. plantarum PS128 ingestion on naïve and loperamide (Lop)-induced constipation mice. We found that, in the two mouse models, the weight, number, and water content of feces in the L. plantarum PS128 group were higher than those in the vehicle control group. Histological observation revealed that L. plantarum PS128 increased the level of colonic mucins including the major mucin MUC2. In addition, the charcoal meal test showed that L. plantarum PS128 significantly increased the small intestine transit in naïve mice, but not in the Lop-treated mice. Since intestinal serotonin has been found to modulate motility, we further analyzed the expression of genes related to serotonin signal transduction in the small intestine of naïve mice. The results showed that L. plantarum PS128 significantly altered the expression levels of Tph1, Chga, Slc6a4, and Htr4, but did not affect the expression levels of Tph2, Htr3a, and Maoa. Furthermore, immunohistochemistry revealed that L. plantarum PS128 significantly increased the number of serotonin-containing intestinal cells in mice. Taken together, our results suggest that L. plantarum PS128 could promote intestinal motility, mucin production, and serotonin signal transduction, leading to a laxative effect in mice.


Author(s):  
Jessica J. Walsh ◽  
Pierre Llorach ◽  
Daniel F. Cardozo Pinto ◽  
Wendy Wenderski ◽  
Daniel J. Christoffel ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yang Lyu ◽  
Daniel E. L. Promislow ◽  
Scott D. Pletcher

AbstractAging arises from complex interactions among multiple biochemical products. Systems-level analyses of biological networks may provide insights into the causes and consequences of aging that evade single-gene studies. We have previously found that dietary choice is sufficient to modulate aging in the vinegar fly, Drosophila melanogaster. Here we show that nutrient choice influenced several measures of metabolic network integrity, including connectivity, community structure, and robustness. Importantly, these effects are mediated by serotonin signaling, as a mutation in serotonin receptor 2A (5-HT2A) eliminated the effects of nutrient choice. Changes in network structure were associated with organism resilience and increased susceptibility to genetic perturbation. Our data suggest that the behavioral or perceptual consequences of exposure to individual macronutrients, involving serotonin signaling through 5-HT2A, qualitatively change the state of metabolic networks throughout the organism from one that is highly connected and robust to one that is fragmented, fragile, and vulnerable to perturbations.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 891
Author(s):  
Caiyun Sun ◽  
Yang Qiu ◽  
Qin Ren ◽  
Xiao Zhang ◽  
Baolong Cao ◽  
...  

The serotonin (5-hydroxytryptamine, 5-HT) signaling system is involved in a variety of physiological functions, including the control of cognition, reward, learning, memory, and vasoconstriction in vertebrates. Contrary to the extensive studies in the mammalian system, little is known about the molecular characteristics of the avian serotonin signaling network. In this study, we cloned and characterized the full-length cDNA of three serotonin receptor genes (HTR1B, HTR1E and HTR1F) in chicken pituitaries. Synteny analyses indicated that HTR1B, HTR1E and HTR1F were highly conserved across vertebrates. Cell-based luciferase reporter assays showed that the three chicken HTRs were functional, capable of binding their natural ligands (5-HT) or selective agonists (CP94253, BRL54443, and LY344864) and inhibiting intracellular cAMP production in a dose-dependent manner. Moreover, activation of these receptors could stimulate the MAPK/ERK signaling cascade. Quantitative real-time PCR analyses revealed that HTR1B, HTR1E and HTR1F were primarily expressed in various brain regions and the pituitary. In cultured chicken pituitary cells, we found that LY344864 could significantly inhibit the secretion of PRL stimulated by vasoactive intestinal peptide (VIP) or forskolin, revealing that HTR1F might be involved in the release of prolactin in chicken. Our findings provide insights into the molecular mechanism and facilitate a better understanding of the serotonergic modulation via HTR1B, HTR1E and HTR1F in avian species.


Sign in / Sign up

Export Citation Format

Share Document