Therapeutic effects of CPU 86017 on acute and chronic congestive cardiac failure mediated by reducing ET-1?NOS and oxidative stress in rats

2004 ◽  
Vol 63 (1) ◽  
pp. 22-32 ◽  
Author(s):  
Yong-Qing Wang ◽  
Yan-Ping Shi ◽  
De-Zai Dai
2019 ◽  
Vol 133 (13) ◽  
pp. 1523-1536 ◽  
Author(s):  
Xiao Sun ◽  
Xiuli Feng ◽  
Dandan Zheng ◽  
Ang Li ◽  
Chunyan Li ◽  
...  

Abstract Cigarette smoke (CS) is the major cause of chronic obstructive pulmonary disease (COPD). CS heightens inflammation, oxidative stress and apoptosis. Ergosterol is the main bioactive ingredient in Cordyceps sinensis (C. sinensis), a traditional medicinal herb for various diseases. The objective of this work was to investigate the effects of ergosterol on anti-inflammatory and antioxidative stress as well as anti-apoptosis in a cigarette smoke extract (CSE)-induced COPD model both in vitro and in vivo. Our results demonstrate that CSE induced inflammatory and oxidative stress and apoptosis with the involvement of the Bcl-2 family proteins via the nuclear factor kappa B (NF-κB)/p65 pathway in both 16HBE cells and Balb/c mice. CSE induced epithelial cell death and increased the expression of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), malondialdehyde (MAD) and the apoptosis-related proteins cleaved caspase 3/7/9 and cleaved-poly-(ADP)-ribose polymerase (PARP) both in vitro and in vivo, whereas decreased the levels of superoxide dismutase (SOD) and catalase (CAT). Treatment of 16HBE cells and Balb/c mice with ergosterol inhibited CSE-induced inflammatory and oxidative stress and apoptosis by inhibiting the activation of NF-κB/p65. Ergosterol suppressed apoptosis by inhibiting the expression of the apoptosis-related proteins both in vitro and in vivo. Moreover, the usage of QNZ (an inhibitor of NF-κB) also partly demonstrated that NF-κB/p65 pathway was involved in the ergosterol protective progress. These results show that ergosterol suppressed COPD inflammatory and oxidative stress and apoptosis through the NF-κB/p65 pathway, suggesting that ergosterol may be partially responsible for the therapeutic effects of cultured C. sinensis on COPD patients.


2015 ◽  
Vol 35 (3) ◽  
pp. 276-281 ◽  
Author(s):  
H Elbe ◽  
Z Dogan ◽  
E Taslidere ◽  
A Cetin ◽  
Y Turkoz

Ciprofloxacin is a broad-spectrum quinolone antibiotic commonly used in clinical practice. Quercetin is an antioxidant belongs to flavonoid group. It inhibits the production of superoxide anion. In this study, we aimed to evaluate the effects of quercetin on renal injury and oxidative stress caused by ciprofloxacin. Twenty-eight female Wistar albino rats were divided into four groups: control, quercetin (20 mg kg−1 day−1 gavage for 21 days), ciprofloxacin (20 mg kg−1 twice a day intraperitoneally for 10 days), and ciprofloxacin + quercetin. Samples were processed for histological and biochemical evaluations. Malondialdehyde (MDA) and glutathione (GSH) levels, superoxide dismutase (SOD), and catalase (CAT) activities were measured in kidney tissue. The ciprofloxacin group showed histopathological changes such as infiltration, dilatation in tubules, tubular atrophy, reduction of Bowman’s space, congestion, hemorrhage, and necrosis. In the ciprofloxacin + quercetin group, these histopathological changes markedly reduced. MDA levels increased in the ciprofloxacin group and decreased in the ciptofloxacin + quercetin group. SOD and CAT activities and GSH levels significantly decreased in the ciprofloxacin group. On the other hand, in the ciprofloxacin + quercetin group, SOD and CAT activities and GSH levels significantly increased with regard to the ciprofloxacin group. We concluded that quercetin has antioxidative and therapeutic effects on renal injury and oxidative stress caused by ciprofloxacin in rats.


2021 ◽  
Vol 8 (11) ◽  
pp. 274
Author(s):  
Zaida Zakaria ◽  
Zaidatul Akmal Othman ◽  
Joseph Bagi Suleiman ◽  
Nur Asyilla Che Jalil ◽  
Wan Syaheedah Wan Ghazali ◽  
...  

Metabolic dysfunction-associated fatty liver disease (MAFLD) is an excessive buildup of liver lipids closely associated with various kinds of undesirable metabolic effects and oxidative stress. We aimed to investigate the protective and therapeutic effects of orlistat on metabolic syndrome and oxidative stress parameters in high-fat diet (HFD) induced-MAFLD rats. Twenty-four male Sprague-Dawley rats were randomly divided into four groups (n = 6/group), i.e., Normal control (N), HFD, HFD + orlistat (HFD + O) (10 mg/kg/day administered concomitantly for 12 weeks as a protective model), and obese+orlistat (OB + O) (10 mg/kg/day administered 6 weeks after induction of obesity as a therapeutic model) groups. After 12 weeks, the HFD group had significantly increased Lee obesity index, serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total cholesterol, triglyceride, low-density lipoprotein levels, liver total cholesterol and triglyceride levels, insulin resistance and non-alcoholic steatohepatitis (NASH) together with decreased serum high-density lipoprotein level. Additionally, the HFD group also showed increased Nrf2 translocation to the nucleus with high Keap1 expression and increased liver oxidative stress parameters. Orlistat significantly improved all these alterations in HFD rats. We demonstrated that orlistat might have protective and therapeutic effects against HFD-induced MAFLD rats by its activation on Nrf2 signaling pathway, which subsequently improved metabolic syndrome and oxidative stress parameters.


2021 ◽  
Author(s):  
Ayaz Ali ◽  
Wei-Wen Kuo ◽  
Chia-Hua Kuo ◽  
Jeng-Feng Lo ◽  
Ray-Jade Chen ◽  
...  

Abstract BackgroundRecent studies indicate that umbilical cord stem cells are cytoprotective against several disorders. One critical limitation in using stem cells is reduction in their viability under stressful conditions, such as diabetes. However, the molecular intricacies responsible for diabetic conditions are not fully elucidated.MethodsEffects of HG on Wharton's jelly derived mesenchymal stem cells (WJMSCs) viability was evaluated by MTT assay and flow cytometry. The mechanism responsible for HG-induced PTEN degradation was assessed using loss and gain of function, immunofluorescence, co-immunoprecipitation, and western blot analysis. Co-culturing of CHIP-overexpressed WJMSCs with embryo derived cardiomyoblasts was performed to analyze their ameliorative effects. The therapeutic effects of CHIP expressing WJMSCs were further validated in Sprague Dawley male (eight weeks old) STZ-induced diabetic animals by echocardiography, immunohistochemistry, hematoxylin eosin, and masson’s trichrome and TUNEL staining. Multiple comparisons were accessed through one‐way ANOVA and p-Value of <0.05 was considered statistically significant. ResultsIn this study, we found that high glucose (HG) conditions induced loss of chaperone homeostasis, stabilized PTEN, triggered the downstream signaling cascade, and induced apoptosis and oxidative stress in Wharton's jelly derived mesenchymal stem cells (WJMSCs). Increased CHIP expression promoted PTEN degradation via the ubiquitin-proteasome system and shortened its half-life during HG stress. Docking studies confirmed the interaction of CHIP with PTEN and FOXO3a with the Bim promoter region. Further, it was found that the chaperone system is involved in CHIP-mediated PTEN proteasomal degradation. CHIP depletion stabilizes PTEN whereas PTEN inhibition showed an inverse effect. CHIP overactivation suppressed the binding of FOXO3a with bim. Co-culturing CHIP overexpressed WJMSCs suppressed HG-induced apoptosis and oxidative stress in cardiac cells. Finally, CHIP overexpression and PTEN inhibition minimized blood glucose levels, improved body and heart weight, and rescued hyperglycemia-induced cardiac injury in diabetic rats. ConclusionThe current study suggests that CHIP confers resistance to apoptosis and oxidative stress and modulates PTEN and the downstream signaling cascade by promoting PTEN proteasomal degradation, thereby potentially exerting therapeutic effects against diabetes-induced cardiomyopathies.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 332 ◽  
Author(s):  
Sara Damiano ◽  
Emanuela Andretta ◽  
Consiglia Longobardi ◽  
Francesco Prisco ◽  
Orlando Paciello ◽  
...  

Ochratoxin A (OTA) is a powerful nephrotoxin and the severity of its damage to kidneys depends on both the dose and duration of exposure. According to the scientific data currently available, the mechanism of action still is not completely clarified, but it is supposed that oxidative stress is responsible for OTA-induced nephrotoxicity. Bioactive compound use has emerged as a potential approach to reduce chronic renal failure. Therefore, curcumin (CURC), due to its therapeutic effects, has been chosen for our study to reduce the toxic renal effects induced by OTA. CURC effects are examined in Sprague Dawley rats treated with CURC (100 mg/kg), alone or in combination with OTA (0.5 mg/kg), by gavage daily for 14 days. The end result of the experiment finds rats treated with OTA show alterations in biochemical and oxidative stress parameters in the kidney, related to a decrease in the Glomerular Filtration Rate (GFR). Conversely, the administration of CURC attenuates oxidative stress and prevents glomerular hyperfiltration versus the OTA group. Furthermore, kidney histological tests show a reduction in glomerular and tubular damage, inflammation and tubulointerstitial fibrosis. This study shows that CURC can mitigate OTA–induced oxidative damage in the kidneys of rats.


Sign in / Sign up

Export Citation Format

Share Document