scholarly journals Cytological study on Sertoli cells and their interactions with germ cells during annual reproductive cycle in turtle

2016 ◽  
Vol 6 (12) ◽  
pp. 4050-4064 ◽  
Author(s):  
Nisar Ahmed ◽  
Huang Yufei ◽  
Ping Yang ◽  
Waqas Muhammad Yasir ◽  
Qian Zhang ◽  
...  

2014 ◽  
Vol 26 (6) ◽  
pp. 834 ◽  
Author(s):  
Mateus R. Beguelini ◽  
Rejane M. Góes ◽  
Sebastião R. Taboga ◽  
Eliana Morielle-Versute

Myotis nigricans presents few and controversial reproductive data, which indicate geographical variation in reproduction. Thus, this study aimed to evaluate the seasonal modifications in testicular and epididymal morphologies in a tropical environment, submitting these organs to morphometric and immunohistochemical analysis. The observations revealed that this species presents two peaks of spermatogenic activity followed by two periods of total testicular regression (a quiescent pre-pubertal-like morphology, where only Sertoli cells and spermatogonia could be observed), in the same annual reproductive cycle, which seem to be only indirectly influenced by abiotic factors. This testicular behaviour seems to be synchronised with the caput and corpus epididymidis, but not with the cauda epididymidis, which presents aspects of sperm storage in May–June. The control of this variation seems to be directly linked to the expression of the androgen receptor, since, throughout the year, it is high in periods of testicular recrudescence and low in periods of deactivation. It is not thought to be directly linked to apoptosis, which is more pronounced in periods of recrudescence than in periods of regression.



Author(s):  
Rita Meyer ◽  
Zoltan Posalaky ◽  
Dennis Mcginley

The Sertoli cell tight junctional complexes have been shown to be the most important structural counterpart of the physiological blood-testis barrier. In freeze etch replicas they consist of extensive rows of intramembranous particles which are not only oriented parallel to one another, but to the myoid layer as well. Thus the occluding complex has both an internal and an overall orientation. However, this overall orientation to the myoid layer does not seem to be necessary to its barrier function. The 20 day old rat has extensive parallel tight junctions which are not oriented with respect to the myoid layer, and yet they are inpenetrable by lanthanum. The mechanism(s) for the control of Sertoli cell junction development and orientation has not been established, although such factors as the presence or absence of germ cells, and/or hormones, especially FSH have been implicated.



2014 ◽  
Author(s):  
Angus Yeomans ◽  
Nichol Thompson ◽  
Jennifer Castle-Miller ◽  
David O Bates ◽  
Domingo Tortonese


2021 ◽  
pp. 1-14
Author(s):  
Yuanyuan Li ◽  
Jinbo Li ◽  
Man Cai ◽  
Zhanfen Qin

The knowledge of testis development in amphibians relative to amniotes remains limited. Here, we used Xenopus laevis to investigate the process of testis cord development. Morphological observations revealed the presence of segmental gonomeres consisting of medullary knots in male gonads at stages 52–53, with no distinct gonomeres in female gonads. Further observations showed that cell proliferation occurs at specific sites along the anterior-posterior axis of the future testis at stage 50, which contributes to the formation of medullary knots. At stage 53, adjacent gonomeres become close to each other, resulting in fusion; then (pre-)Sertoli cells aggregate and form primitive testis cords, which ultimately become testis cords when germ cells are present inside. The process of testis cord formation in X. laevis appears to be more complex than in amniotes. Strikingly, steroidogenic cells appear earlier than (pre-)Sertoli cells in differentiating testes of X. laevis, which differs from earlier differentiation of (pre-)Sertoli cells in amniotes. Importantly, we found that the mesonephros is connected to the testis gonomere at a specific site at early larval stages and that these connections become efferent ducts after metamorphosis, which challenges the previous concept that the mesonephric side and the gonadal side initially develop in isolation and then connect to each other in amphibians and amniotes.



Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1729
Author(s):  
Sara Falvo ◽  
Luigi Rosati ◽  
Maria Maddalena Di Fiore ◽  
Federica Di Giacomo Russo ◽  
Gabriella Chieffi Baccari ◽  
...  

The quail Coturnix coturnix is a seasonal breeding species, with the annual reproductive cycle of its testes comprising an activation phase and a regression phase. Our previous results have proven that the testicular levels of both 17β-estradiol (E2) and androgens are higher during the reproductive period compared to the non-reproductive period, which led us to hypothesize that estrogens and androgens may act synergistically to initiate spermatogenesis. The present study was, therefore, aimed to investigate the estrogen responsive system in quail testis in relation to the reproduction seasonality, with a focus on the molecular pathways elicited in both active and regressive quail testes. Western blotting and immunohistochemistry analysis revealed that the expression of ERα, which is the predominant form of estrogen receptors in quail testis, was correlated with E2 concentration, suggesting that increased levels of E2-induced ERα could play a key role in the resumption of spermatogenesis during the reproductive period, when both PCNA and SYCP3, the mitotic and meiotic markers, respectively, were also increased. In the reproductive period we also found the activation of the ERK1/2 and Akt-1 kinase pathways and an increase in second messengers cAMP and cGMP levels. In the non-reproductive phase, when the E2/ERα levels were low, the inactivation of ERK1/2 and Akt-1 pathways favored apoptotic events due to an increase in the levels of Bax and cytochrome C, with a consequent regression of the gonad.



2009 ◽  
Vol 296 (3) ◽  
pp. R743-R762 ◽  
Author(s):  
R.-Marc Pelletier ◽  
Suk Ran Yoon ◽  
Casimir D. Akpovi ◽  
Emil Silvas ◽  
María Leiza Vitale

We identified aberrations leading to spontaneous autoimmune orchitis (AIO) in mink, a seasonal breeder and natural model for autoimmunity. This study provides evidence favoring the view that a malfunction of the clearance mechanisms for apoptotic cell debris arising from imbalances in phagocyte receptors or cytokines acting on Sertoli cells constitutes a major factor leading to breakdown of self-tolerance during spontaneous AIO. Serum anti-sperm antibody titers measured by ELISA reflected spermatogenic activity without causing immune inflammatory responses. Orchitic mink showed excess antibody production accompanied by spermatogenic arrest, testicular leukocyte infiltration, and infertility. AIO serum labeled the postacrosomal region, the mid and end piece of mink sperm, whereas normal mink serum did not. Normal serum labeled plasma membranes, whereas AIO serum reacted with germ cell nuclei. Western blot analyses revealed that AIO serum reacted specifically to a 23- and 50-kDa protein. The number of apostain-labeled apoptotic cells was significantly higher in orchitic compared with normal tubules. However, apoptosis levels measured by ELISA in seminiferous tubular fractions (STf) were not significantly different in normal and orchitic tubules. The levels of CD36, TNF-α, TNF-α RI, IL-6, and Fas but not Fas-ligand (L), and ATP-binding cassette transporter ABCA1 were changed in AIO STf. TNF-α and IL-6 serum levels were increased during AIO. Fas localized to germ cells, Sertoli cells, and the lamina propria of the tubules and Fas-L, to germ cells. Fas colocalized with Fas-L in residual bodies in normal testis and in giant cells and infiltrating leukocytes in orchitic tubules.





2007 ◽  
Vol 292 (2) ◽  
pp. E513-E522 ◽  
Author(s):  
Andrii Domanskyi ◽  
Fu-Ping Zhang ◽  
Mirja Nurmio ◽  
Jorma J. Palvimo ◽  
Jorma Toppari ◽  
...  

Androgen receptor-interacting protein 4 (ARIP4) belongs to the SNF2 family of proteins involved in chromatin remodeling, DNA excision repair, and homologous recombination. It is a DNA-dependent ATPase, binds to DNA and mononucleosomes, and interacts with androgen receptor (AR) and modulates AR-dependent transactivation. We have examined in this study the expression and cellular localization of ARIP4 during postnatal development of mouse testis. ARIP4 was detected by immunohistochemistry in Sertoli cell nuclei at all ages studied, starting on day 5, and exhibited the highest expression level in adult mice. At the onset of spermatogenesis, ARIP4 expression became evident in spermatogonia, pachytene, and diplotene spermatocytes. Immunoreactive ARIP4 antigen was present in Leydig cell nuclei. In Sertoli cells ARIP4 was expressed in a stage-dependent manner, with high expression levels at stages II–VI and VII–VIII. ARIP4 expression patterns did not differ significantly in testes of wild-type, follicle-stimulating hormone receptor knockout, and luteinizing hormone receptor knockout mice. In testes of hypogonadal mice, ARIP4 was found mainly in interstitial cells and exhibited lower expression in Sertoli and germ cells. In vitro stimulation of rat seminiferous tubule segments with testosterone, FSH, or forskolin did not significantly change stage-specific levels of ARIP4 mRNA. Heterozygous ARIP4+/− mice were haploinsufficient and had reduced levels of Sertoli-cell specific androgen-regulated Rhox5 (also called Pem) mRNA. Collectively, ARIP4 is an AR coregulator in Sertoli cells in vivo, but the expression in the germ cells implies that it has also AR-independent functions in spermatogenesis.



Reproduction ◽  
2013 ◽  
Vol 146 (5) ◽  
pp. 471-480 ◽  
Author(s):  
Gerardo M Oresti ◽  
Jesús García-López ◽  
Marta I Aveldaño ◽  
Jesús del Mazo

Male germ cell differentiation entails the synthesis and remodeling of membrane polar lipids and the formation of triacylglycerols (TAGs). This requires fatty acid-binding proteins (FABPs) for intracellular fatty acid traffic, a diacylglycerol acyltransferase (DGAT) to catalyze the final step of TAG biosynthesis, and a TAG storage mode. We examined the expression of genes encoding five members of the FABP family and two DGAT proteins, as well as the lipid droplet protein perilipin 2 (PLIN2), during mouse testis development and in specific cells from seminiferous epithelium.Fabp5expression was distinctive of Sertoli cells and consequently was higher in prepubertal than in adult testis. The expression ofFabp3increased in testis during postnatal development, associated with the functional differentiation of interstitial cells, but was low in germ cells.Fabp9, together withFabp12, was prominently expressed in the latter. Their transcripts increased from spermatocytes to spermatids and, interestingly, were highest in spermatid-derived residual bodies (RB). Both Sertoli and germ cells, which produce neutral lipids and store them in lipid droplets, expressedPlin2. Yet, whileDgat1was detected in Sertoli cells,Dgat2accumulated in germ cells with a similar pattern of expression asFabp9. These results correlated with polyunsaturated fatty acid-rich TAG levels also increasing with mouse germ cell differentiation highest in RB, connecting DGAT2 with the biosynthesis of such TAGs. The age- and germ cell type-associated increases inFabp9,Dgat2, andPlin2levels are thus functionally related in the last stages of germ cell differentiation.



Sign in / Sign up

Export Citation Format

Share Document