Development of Testis Cords and the Formation of Efferent Ducts in Xenopus laevis: Differences and Similarities with Other Vertebrates

2021 ◽  
pp. 1-14
Author(s):  
Yuanyuan Li ◽  
Jinbo Li ◽  
Man Cai ◽  
Zhanfen Qin

The knowledge of testis development in amphibians relative to amniotes remains limited. Here, we used Xenopus laevis to investigate the process of testis cord development. Morphological observations revealed the presence of segmental gonomeres consisting of medullary knots in male gonads at stages 52–53, with no distinct gonomeres in female gonads. Further observations showed that cell proliferation occurs at specific sites along the anterior-posterior axis of the future testis at stage 50, which contributes to the formation of medullary knots. At stage 53, adjacent gonomeres become close to each other, resulting in fusion; then (pre-)Sertoli cells aggregate and form primitive testis cords, which ultimately become testis cords when germ cells are present inside. The process of testis cord formation in X. laevis appears to be more complex than in amniotes. Strikingly, steroidogenic cells appear earlier than (pre-)Sertoli cells in differentiating testes of X. laevis, which differs from earlier differentiation of (pre-)Sertoli cells in amniotes. Importantly, we found that the mesonephros is connected to the testis gonomere at a specific site at early larval stages and that these connections become efferent ducts after metamorphosis, which challenges the previous concept that the mesonephric side and the gonadal side initially develop in isolation and then connect to each other in amphibians and amniotes.

2021 ◽  
Vol 52 (6) ◽  
pp. 370-378
Author(s):  
A. Yu. Kulibin ◽  
E. A. Malolina

Abstract The rete testis connects seminiferous tubules in which germ cells develop to the efferent ducts and the epididymis, where gametes mature and gain mobility. Several recent studies have thoroughly explored the morphogenesis of this structure in mice during embryonic and postnatal periods. A part of the rete testis has been shown to derive from the precursors of gonad somatic cells before sex determination. The other part forms from embryonal Sertoli cells of testis cords adjacent to the mesonephros. The transformation of Sertoli cells into rete testis cells is apparently not limited to the embryonic stage of development and continues during postnatal testis development. Recently, it was found that the rete testis participates in the formation and maintenance of specialized Sertoli cells in terminal segments of seminiferous tubules, transitional zones. Current views suggest that the transitional zones of the seminiferous tubules may represent a niche for spermatogonial stem cells, the site of the prolonged proliferation of Sertoli cells in the pubertal and postpubertal periods of testis development, and also could be a generator of spermatogenic waves. To sum up, the rete testis transports gametes from the testis to the epididymis, maintains pressure within seminiferous tubules, regulates the composition of the testicular fluid, and impacts the spermatogenic process itself.


Endocrinology ◽  
2011 ◽  
Vol 152 (11) ◽  
pp. 4358-4367 ◽  
Author(s):  
Denise R. Archambeault ◽  
Jessica Tomaszewski ◽  
Andrew J. Childs ◽  
Richard A. Anderson ◽  
Humphrey Hung-Chang Yao

Proper development of the seminiferous tubules (or testis cords in embryos) is critical for male fertility. Sertoli cells, somatic components of the seminiferous tubules, serve as nurse cells to the male germline, and thus their numbers decide the quantity of sperm output in adulthood. We previously identified activin A, the protein product of the activin βA (Inhba) gene, as a key regulator of murine Sertoli cell proliferation and testis cord expansion during embryogenesis. Although our genetic studies implicated fetal Leydig cells as the primary producers of testicular activin A, gonocytes are another potential source. To investigate the relative contribution of gonocyte-derived activin A to testis morphogenesis, we compared testis development in the Inhba global knockout mouse, which lacks activin A production in all cells (including the gonocytes), and a steroidogenic factor 1 (Sf1)-specific conditional knockout model in which activin A expression in testicular somatic cells is disrupted but gonocyte expression of activin A remains intact. Surprisingly, testis development was comparable in these two models of activin A insufficiency, with similar reductions in Sertoli cell proliferation and minor differences in testis histology. Thus, our findings suggest activin A from male gonocytes is insufficient to promote Sertoli cell proliferation and testis cord expansion in the absence of somatic cell-derived activin A. Evaluation of adult male mice with fetal disruption of activin A revealed reduced testis size, lowered sperm production, altered testicular histology, and elevated plasma FSH levels, defects reminiscent of human cases of androgen-sufficient idiopathic oligozoospermia.


Development ◽  
1990 ◽  
Vol 108 (Supplement) ◽  
pp. 89-98 ◽  
Author(s):  
M. Azim Surani ◽  
Rashmi Kothary ◽  
Nicholas D. Allen ◽  
Prim B. Singh ◽  
Reinald Fundele ◽  
...  

Development in mammals is influenced by genome imprinting which results in differences in the expression of some homologous maternal and paternal alleles. This process, initiated in the germline, can continue following fertilization with interactions between oocyte cytoplasmic factors and the parental genomes involving modifier genes. Further epigenetic modifications may follow to render the ‘imprints’ heritable through subsequent cell divisions during development. Imprinting of genes can be critical for their dosage affecting embryonic growth, cell proliferation and differentiation. The cumulative effects of all the imprinted genes are observed in androgenones (AC) and parthenogenones (PG), which reveal complementary phenotypes with respect to embryonic and extraembryonic tissues. The presence of PG cells in chimeras causes growth retardation, while that of AG cells enhanced growth. AG cells apparently have a higher cell proliferation rate and, unlike PG cells, are less prone to selective elimination. However, the PG germ cells are exempt from cell selection. In chimeras, PG cells are more likely to be found in ectodermal derivatives such as epidermis and brain in contrast to AG cells which make pronounced contributions to many mesodermal derivatives such as muscle, kidney, dermis and skeleton. The presence of androgenetic cells in chimeras also results in the disproportionate elongation of the anterior–posterior axis and sometimes in the abnormal development of skeletal elements along the axis. Genetic studies highlight the influence of subsets of imprinted genes, and identify those that are critical for development.


2009 ◽  
Vol 21 (9) ◽  
pp. 67
Author(s):  
C. Itman ◽  
C. Wong ◽  
D. A. Jans ◽  
M. Ernst ◽  
K. L. Loveland

Activin A, a TGF-beta superfamily ligand which signals via Smad2 and Smad3, is critical for normal mouse testis development and quantitatively normal sperm production. Whereas activin enhances immature Sertoli cell proliferation (1), excessive activin production causes Sertoli cell tumours (2); this is alleviated when mice lack Smad3 (3). Sertoli cells exhibit developmentally regulated Smad utilization in activin signalling. Immature Sertoli cells signal via Smad3 while the onset of Smad2-mediated signal transduction correlates with Sertoli cell maturation (4). This change coincides with decreased testicular Smad3 production at puberty and a shift in follicle stimulating hormone (FSH)-induced Smad transcription, from Smad3 in 6 dpp (days post partum) Sertoli cells to Smad2 in 15 dpp cells. These findings suggest that Smad3 is more important for testis development than adult spermatogenesis. To test this hypothesis, we examined testis development in Smad3+/– and Smad3–/– mice. At 7 dpp, testis weight and cord diameter were reduced in Smad3–/–mice, indicating impaired Sertoli cell proliferation. Levels of FSH, a potent Sertoli cell mitogen, were unaltered. Histological analysis revealed advanced spermatogenesis in heterozygous mice, with round spermatids already present at 16 dpp. Quantitative PCR also identified advanced Sertoli and germ cell maturation in Smad3+/– mice, while Leydig cell maturation appeared unaltered. Adult Smad3+/– and Smad3–/– mice were fertile, but had smaller testes. This is the first study relating Smad3 levels to puberty onset and identifies the Smad3+/– mouse as a model of peripheral precocious puberty with otherwise normal physiological status, i.e. no gonadal tumours and normal FSH levels. These results demonstrate that FSH influences testis growth and maturation by regulating Smad3 expression and highlights the importance of testing whether environmental factors, toxicants and endocrine disruptors affect Smad3 expression, thereby leading to altered testis development.


1996 ◽  
Vol 151 (1) ◽  
pp. 37-48 ◽  
Author(s):  
J Singh ◽  
D J Handelsman

Abstract We previously demonstrated that androgens alone, in the complete absence of gonadotropins, initiated qualitatively complete spermatogenesis in hypogonadal (hpg) mice. Although germ cell to Sertoli cell ratios were normal in hpg mice with androgen-induced spermatogenesis, testicular size, Sertoli cell and germ cell numbers only reached 40% of those of non-hpg mice, and Sertoli cell numbers were unaffected by androgen treatment started at 21 days of age. We postulated that these observations were due to diminished gonadotropin-dependent Sertoli cell proliferation during perinatal life while the Sertoli cells still exhibited normal carrying capacity for mature germ cells. In order to test this hypothesis, we examined the effects of administering androgens and gonadotropins to hpg mice during the first 2 weeks of postnatal life when Sertoli cells normally continue to proliferate. The study end-points were Sertoli and germ cell numbers in hpg mice following induction of spermatogenesis by 8 weeks treatment with 1 cm subdermal silastic testosterone implants. Newborn pups (postnatal day 0–1) were injected s.c. with recombinant human FSH (rhFSH) (0·5 IU/20 μl) or saline once daily for 14 days, with or without a single dose of testosterone propionate (TP) (100 μg/20 μl arachis oil) or human chorionic gonadotropin (hCG) (1 IU/20 μl). Untreated hpg and phenotypically normal littermates were studied as concurrent controls. At 21 days of age, all treated weanling mice received a 1 cm silastic subdermal testosterone implant and, finally, 8 weeks after testosterone implantation, all mice were killed. As expected, qualitatively complete spermatogenesis was induced in all groups by testosterone despite undetectable circulating FSH levels. Exogenous rhFSH increased testis size by 43% (P<0·002) but a single neonatal dose of either TP or hCG reduced the FSH effect although neither TP nor hCG had any effect alone. In contrast, a single neonatal dose of TP or hCG increased final seminal vesicle size whereas FSH had no effect. FSH and TP treatment significantly increased absolute numbers of testicular spermatids compared with saline treatment, whereas hCG and TP significantly increased testicular sperm when expressed relative to testis size. Stereological evaluation of Sertoli and germ cell numbers demonstrated a rise in the absolute numbers of Sertoli and all germ cell populations induced by neonatal administration of hormones. When expressed per Sertoli cells the numbers of germ cells in the treated mice were between 85 and 90% of non-hpg controls. We conclude that exogenous FSH treatment during the first 2 weeks of postnatal life, coinciding with the natural time of Sertoli cell proliferation, increases Sertoli cell numbers and thereby the ultimate size of the mature testis and its germ cell production. Thus neonatal gonadotropin secretion may be a critical determinant of the sperm-producing capacity of the mature testis. In addition, neonatal exposure to androgens could be important for the imprinting of sex accessory organs in hpg mice, with the long-term effects of altering the sensitivity of the accessory organs to exogenous testosterone later in life. Journal of Endocrinology (1996) 151, 37–48


2005 ◽  
Vol 17 (9) ◽  
pp. 62
Author(s):  
S. J. Meachem

The concept of terminal differentiation of Sertoli cells has been challenged and this new information has important implications for male fertility. The mammalian Sertoli cell has two distinct functions: (i) formation of the seminiferous cords and (ii) provision of nutritional and structural support to the developing germ cells. For these to occur successfully, Sertoli cells must undergo numerous maturational changes between foetal and adult life, the main switches occur around the onset of puberty, coincident with the rise in serum gonadotrophins. These switches include the loss of proliferative activity and the formation of the blood testis barrier. Follicle stimulating hormone (FSH) plays a key role in supporting Sertoli cell proliferation in early postnatal life and thus is critical in establishing sperm output in adulthood. After puberty, the size of the Sertoli cell population is considered to be stable and unmodifiable by hormones. This accepted view has been contested as data shows that the size of the adult Sertoli cell population is modifiable by hormone suppression, and that Sertoli cells can regain proliferative activity when stimulated by FSH in the Djungarian hamster1. The molecular mechanism(s) by which Sertoli cells re-enter proliferation are not known in this model however a study demonstrated that helix-loop-inhibitor of differentiation proteins can induce terminally differentiated Sertoli cells to re-enter the cell cycle and proliferate2. Thyroid hormone and testosterone may be involved in the cessation of Sertoli cell proliferation. Gonadotrophin suppression in the adult Djungarian hamster also results in the disruption of the blood testis barrier and spatial organisation of the inter Sertoli cell tight junction proteins and as a consequence the loss of all germ cells that reside inside the blood testis barrier. FSH restores the organisation of these tight junction proteins, which is associated with the appearance of more mature germ cells. It is expected that the integrity of the blood testis barrier is also re-established. It is suggested that this demonstrated plasticity of the adult Sertoli cell may be relevant in clinical settings, particularly to some types of infertility and testicular malignancies where Sertoli cells have failed to undergo these important maturational switches. (1)Chaudhary et al. (2005) Biol. Reprod. 72, 1205. (2)Meachem et al. (2005) Biol. Reprod. 72, 1187.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 974
Author(s):  
Wei Zheng ◽  
Jabeen Nazish ◽  
Fazal Wahab ◽  
Ranjha Khan ◽  
Xiaohua Jiang ◽  
...  

Testis cords are the embryonic precursors of the seminiferous tubules. Development of testis cords is a key event during embryonic testicular morphogenesis and is regulated by multiple signaling molecules produced by Sertoli cells. However, the exact nature and the cascade of molecular events underlying testis cord development remain to be uncovered. In the current study, we explored the role of DNA damage binding protein 1 (DDB1) in Sertoli cells during mouse testis cord development. The genetic ablation of Ddb1 specifically in Sertoli cells resulted in the compromised Sertoli cell proliferation and disruption of testis cord remodeling in neonatal mice. This testicular dysgenesis persisted through adulthood, resulting in smaller testis and low sperm production. Mechanistically, we observed that the DDB1 degradation can stabilize SET domain-containing lysine methyltransferase 8 (SET8), which subsequently decreases the phosphorylation of SMAD2, an essential intracellular component of transforming growth factor beta (TGFβ) signaling. Taken together, our results suggest an essential role of Ddb1 in Sertoli cell proliferation and normal remodeling of testis cords via TGFβ pathway. To our knowledge, this is the first upstream regulators of TGFβ pathway in Sertoli cells, and therefore it furthers our understanding of testis cord development.


Reproduction ◽  
2005 ◽  
Vol 130 (1) ◽  
pp. 15-28 ◽  
Author(s):  
William H Walker ◽  
Jing Cheng

Testosterone and follicle-stimulating hormone (FSH) are required to obtain full reproductive potential. In the testis, somatic Sertoli cells transduce signals from testosterone and FSH into the production of factors that are required by germ cells as they mature into spermatozoa. Recent advances in identifying new signaling pathways that are regulated by FSH and testosterone have allowed for refinement in the understanding of the independent, overlapping and synergistic actions of these hormones. In this review, we discuss the signaling pathways that are regulated by FSH and testosterone as well as the resulting metabolic and gene expression changes that occur as related to Sertoli cell proliferation, differentiation and the support of spermatogenesis.


Author(s):  
Rita Meyer ◽  
Zoltan Posalaky ◽  
Dennis Mcginley

The Sertoli cell tight junctional complexes have been shown to be the most important structural counterpart of the physiological blood-testis barrier. In freeze etch replicas they consist of extensive rows of intramembranous particles which are not only oriented parallel to one another, but to the myoid layer as well. Thus the occluding complex has both an internal and an overall orientation. However, this overall orientation to the myoid layer does not seem to be necessary to its barrier function. The 20 day old rat has extensive parallel tight junctions which are not oriented with respect to the myoid layer, and yet they are inpenetrable by lanthanum. The mechanism(s) for the control of Sertoli cell junction development and orientation has not been established, although such factors as the presence or absence of germ cells, and/or hormones, especially FSH have been implicated.


Sign in / Sign up

Export Citation Format

Share Document