Kinetics of the reactive cell clones after immunosuppression and induction of tolerance. II. Different recovery of 19 S and 7 S plaque-forming cells after induction of tolerance

1975 ◽  
Vol 5 (10) ◽  
pp. 667-671 ◽  
Author(s):  
U. Botzenhardt ◽  
E.-M. Lemmel
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3503-3503
Author(s):  
Matthias Ritgen ◽  
Monika Brueggemann ◽  
Sebastian Boettcher ◽  
Thorsten Raff ◽  
Christiane Pott ◽  
...  

Abstract Allogeneic stem cell transplantation (SCT) is the only known curative treatment for high-risk CLL. We have recently shown that minimal residual disease (MRD) monitoring can identify patients with graft versus leukemia (GvL)-induced disease response to either reduction of immunosuppression (IS) or to administration of donor lymphocyte infusions (DLI), suggesting that those patients are potentially cured by an ongoing immunologic antileukemic effect induced by donor immune cells (Leukemia 22:1377). It is uncertain, however, which cell population maintains this process; although T as well as NK-cell mediated effects are discussed. The present study addressed the question whether disease response upon immunomodulation after SCT is associated with the occurrence of dominant T cell clones. Methods: 32 patients allografted for high-risk CLL who had MRD follow-up by clone-specific PCR or MRD-flow available were included in this investigation. We used the BIOMED T-cell receptor multiplex PCRs (TCR-PCR) to search for T cell clones which might be involved in the documented GVL effects. TCR rearrangements were sequenced and analyzed using the IMGT database. Results: 16 of 32 patients showed MRD response after IS reduction or DLI. GVL-induced MRD clearance was associated with onset of chronic GVHD in almost all instances. Twenty-four different dominant TCR rearrangements could be identified in 15/32 patients by BIMOD TCR-PCR. Most of the T cell populations show rearranged gamma/delta TCRs suggesting that regulatory gamma/delta T cells might be involved in this process. TCR sequences employed were TRGV9 (13), TRGV2 (2) and TRGV1, TRGV4, TRGV8, TRGV10, TRGV11, TRBV5, TRBV6, TRBV12, TRBV15. In 4 patients with a potential productive TCR rearrangement (TRGV4+TRDV1, TRBV6, TRGV2, TRGV11+TRGV9) we were able to design a TCR-specific real-time PCR for quantitative follow-up of this clonal T cell population. This data was compared to flow cytometric monitoring of T-cell subpopulations and MRD kinetics post SCT. In those 4 patients we could demonstrate an inverse correlation of the kinetics of MRD and the kinetics of clonal T cell expansions. T cell clones emerging during this phase remained on a stable level throughout the whole follow-up in patients showing durable MRD negativity. Conclusion: In CLL, MRD clearance after SCT is correlated to the emergence of dominant T cell clones, suggesting that GVL activity is based on allo- or CLL-specific T cell expansion. Further studies are needed to clarify the role of these T cell clones for GVL and GVHD development.


1982 ◽  
Vol 156 (2) ◽  
pp. 664-669 ◽  
Author(s):  
V L Braciale ◽  
J R Gavin ◽  
T J Braciale

This study demonstrates that the insulin receptors are expressed on the surface of some T cell clones after specific antigenic stimulation. The insulin receptors on these lymphocytes are physicochemically similar to insulin receptors present on cells which express the receptors constitutively (adipocytes, hepatocytes, etc.). The kinetics of expression of insulin receptors on cloned, noncytotoxic T cells after specific antigenic stimulation closely parallels that of [3H]thymidine incorporation in such cultures.


2012 ◽  
Vol 287 (15) ◽  
pp. 11924-11933 ◽  
Author(s):  
Aya Ishizaka ◽  
Taketoshi Mizutani ◽  
Kazuyoshi Kobayashi ◽  
Toshio Tando ◽  
Kouhei Sakurai ◽  
...  

We have previously shown that DPF2 (requiem/REQ) functions as a linker protein between the SWI/SNF complex and RelB/p52 NF-κB heterodimer and plays important roles in NF-κB transactivation via its noncanonical pathway. Using sensitive 293FT reporter cell clones that had integrated a SWI/SNF-dependent NF-κB reporter gene, we find in this study that the overexpression of DPF1, DPF2, DPF3a, DPF3b, and PHF10 significantly potentiates the transactivating activity of typical NF-κB dimers. Knockdown analysis using 293FT reporter cells that endogenously express these five proteins at low levels clearly showed that DPF3a and DPF3b, which are produced from the DPF3 gene by alternative splicing, are the most critical for the RelA/p50 NF-κB heterodimer transactivation induced by TNF-α stimulation. Our data further show that this transactivation requires the SWI/SNF complex. DPF3a and DPF3b are additionally shown to interact directly with RelA, p50, and several subunits of the SWI/SNF complex in vitro and to be co-immunoprecipitated with RelA/p50 and the SWI/SNF complex from the nuclear fractions of cells treated with TNF-α. In ChIP experiments, we further found that endogenous DPF3a/b and the SWI/SNF complex are continuously present on HIV-1 LTR, whereas the kinetics of RelA/p50 recruitment after TNF-α treatment correlate well with the viral transcriptional activation levels. Additionally, re-ChIP experiments showed DPF3a/b and the SWI/SNF complex associate with RelA on the endogenous IL-6 promoter after TNF-α treatment. In conclusion, our present data indicate that by linking RelA/p50 to the SWI/SNF complex, DPF3a/b induces the transactivation of NF-κB target gene promoters in relatively inactive chromatin contexts.


2000 ◽  
Vol 191 (12) ◽  
pp. 2209-2220 ◽  
Author(s):  
Harry White ◽  
David Gray

The distribution of immunoglobulin (Ig) isotypes within specific B cell clones in vivo after immunization is not well defined. Using an IgVH/CDR3- and isotype-specific reverse transcription polymerase chain reaction method, we have carried out a survey of the diversification of the isotype in a splenic response to phenyl-oxazolone (phOx) on a chicken serum albumin carrier. The phOx-specific VH (VHOx-1 with specific CDR3 motif) is associated with all of the heavy chains (μ, δ, α, γ, and ε) after simple immunization with antigen in alum. The kinetics of expression of each isotype are distinct and reproducible. Focusing mainly on the expression of secretory Ig transcripts, IgM, IgG1, and IgE are found after priming, whereas IgD and IgA appear after boosting. Secretory IgD transcripts are found reproducibly at moderate levels and may, therefore, contribute significantly to the secreted Ig response in mice. Most crucially, we find enhanced levels of secretory IgM/VHOx-1 transcripts (with ‘phOx-specific’ CDR3) after boosting, strongly indicating the existence of IgM memory cells that give rise to an enhanced specific IgM secretion in the secondary response.


1997 ◽  
Vol 29 (1-2) ◽  
pp. 765-766 ◽  
Author(s):  
S. Koja ◽  
H. Doi ◽  
S. Satomi ◽  
K. Fujimori ◽  
M. Takemura ◽  
...  

1983 ◽  
Vol 157 (5) ◽  
pp. 1434-1447 ◽  
Author(s):  
J R Lamb ◽  
B J Skidmore ◽  
N Green ◽  
J M Chiller ◽  
M Feldmann

Antigen-specific human T cell clones specific for defined peptides of influenza A hemagglutinin were found to be rendered unresponsive by incubation with moderately high concentrations of antigen. This was the case whether the synthetic peptide antigen was present for the duration of the culture or the cloned T cells were preincubated with antigen for 3-18 h at 37 degrees C, before stimulation with T-depleted irradiated sheep erythrocyte non-rosette-forming lymphocytes (E-) pulsed with the optimal dose of peptide. Tolerance could not be overcome by culture with various numbers of E- cells and antigen. The induction of unresponsiveness was antigen specific, since it depended upon incubation with the appropriate peptide recognized by that clone. In addition, the tolerant T cells remained unresponsive to stimulation with the specific peptide for at least 7 d after induction even though maintained in culture in the presence of T cell growth factor. This state of antigen-specific unresponsiveness is akin to immunological tolerance. Furthermore, the experiments reported here demonstrate that the helper T cell clone can be inhibited by the relevant peptide in the absence of any suppressor cells or their precursors. This suggests that antigen-induced unresponsiveness need not always depend on the presence of suppressor T cells. The induction of tolerance in T cell clones does not result in early T cell death, since cells that no longer proliferate in response to the specific antigen and accessory cells still proliferate in response to T cell growth factor.


1986 ◽  
Vol 164 (4) ◽  
pp. 1114-1128 ◽  
Author(s):  
P A Scherle ◽  
W Gerhard

We compared the effects of adoptively transferred Th cell clones specific for the influenza hemagglutinin (HA), matrix (M), or nucleoprotein (NP) on the antibody response of nude mice infected with A/PR/8/34 influenza virus. We show that the production of antibodies to the HA absolutely requires the presence of virus-specific Th cells. Further, transfer of a Th clone specific for the internal proteins, M or NP, was as effective as was transfer of an HA-specific clone in supporting an antibody response to the HA. With each of the clones, the kinetics of the response were accelerated by approximately 3 d compared with the antibody response of normal BALB/c mice. The HA- and M-specific clones supported an isotype switch from IgM to IgG and IgA similar to that which occurs during a normal antibody response. Finally, as shown by coinfection experiments, the response required a cognate T-B interaction whether the determinants recognized by the Th and B cell are located on the same viral protein or on different viral proteins within the same virus particle. The implications of these findings for understanding the T-B interactions that occur during an effective antiviral antibody response are discussed.


Sign in / Sign up

Export Citation Format

Share Document