scholarly journals The effect of plasma treatment process on the electrical conductivity and coating fastness of silver nanoparticles functionalized aramid fiber paper

2021 ◽  
Author(s):  
Guanglu Li ◽  
Zhenhua Sun ◽  
Songwei Gao ◽  
Yawen Wang ◽  
Shaojuan Chen ◽  
...  

Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 599 ◽  
Author(s):  
Zhenhua Sun ◽  
Yanfen Zhou ◽  
Wenyue Li ◽  
Shaojuan Chen ◽  
Shihua You ◽  
...  

Direct electroless silver plating of para-aramid (PPTA) is difficult due to its extremely low surface chemical energy. In order to facilitate the deposition of silver nanoparticles and to enhance the washing fastness, oxygen plasma treatment and dopamine modification were conducted before silver plating of PPTA fibers. Various techniques including scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA) were used to characterize the surface morphology, chemical composition and thermal stability of the silver-plated PPTA fibers. Electrical resistance and silver content of the silver-coated PPTA fibers before and after standard washing were also studied. The results showed that silver nanoparticles were successfully coated onto the surface of PPTA fibers with and without plasma treatment, but the coating continuity and the electrical conductivity of the silver-coated PPTA fibers were greatly enhanced with the assistance of plasma treatment. It was also demonstrated that the washing fastness of silver-coated PPTA fibers was improved after plasma treatment as indicated by electrical resistance and continuity of the silver nanoparticles after various washing cycles. It was found that the electrical resistance of plasma-treated PPTA-PDA/Ag fibers prepared at an AgNO3 concentration of 20 g/L reached 0.89 Ω/cm and increased slightly to 0.94 Ω/cm after 10 standard washing cycles. The silver-coated PPTA fibers also showed stable electrical conductivity under 250 repeated stretching-releasing cycles at a strain of 3%.



Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jure Žigon ◽  
Matjaž Pavlič ◽  
Pierre Kibleur ◽  
Jan Van den Bulcke ◽  
Marko Petrič ◽  
...  

AbstractPlasma treatment is becoming a mature technique for modification of surfaces of various materials, including wood. A better insight in the treatment process and the impact of the plasma on properties of wood bulk are still needed. The study was performed on Norway spruce and common beech wood, as well as their thermally modified variations. The formations of the airborne discharge, as well as mass changes of the treated wood, were monitored. The impact of such treatment on wood-coating interaction was investigated by evaluating the dynamic wettability and penetration into wood. At the wood surface, plasma streamers were observed more intense on denser latewood regions. Wood mass loss was higher with increasing number of passes through the plasma discharge and was lower for thermally modified wood than for unmodified wood. Plasma treatment increased the surface free energy of all wood species and lowered the contact angles of a waterborne coating, these together indicating enhanced wettability after treatment. Finally, the distribution and penetration depth of the coating were studied with X-ray microtomography. It was found that the coating penetrated deeper into beech than into spruce wood. However, the treatment with plasma increased the penetration of the coating only into spruce wood.



2021 ◽  
pp. 0958305X2198988
Author(s):  
Nur Syakirah Rabiha Rosman ◽  
Noor Aniza Harun ◽  
Izwandy Idris ◽  
Wan Iryani Wan Ismail

The emergence of technology to produce nanoparticles (1 nm – 100 nm in size) has drawn significant researchers’ interests. Nanoparticles can boost the antimicrobial, catalytic, optical, and electrical conductivity properties, which cannot be achieved by their corresponding bulk. Among other noble metal nanoparticles, silver nanoparticles (AgNPs) have attained a special emphasis in the industry due to their superior physical, chemical, and biological properties, closely linked to their shapes, sizes, and morphologies. Proper knowledge of these NPs is essential to maximise the potential of biosynthesised AgNPs in various applications while mitigating risks to humans and the environment. This paper aims to critically review the global consumption of AgNPs and compare the AgNPs synthesis between conventional methods (physical and chemical) and current trend method (biological). Related work, advantages, and drawbacks are also highlighted. Pertinently, this review extensively discusses the current application of AgNPs in various fields. Lastly, the challenges and prospects of biosynthesised AgNPs, including application safety, oxidation, and stability, commercialisation, and sustainability of resources towards a green environment, were discussed.



2013 ◽  
Vol 749 ◽  
pp. 282-286
Author(s):  
Xian Hui Wang ◽  
Xiao Chun Sun ◽  
Xiao Hong Yang ◽  
Shu Hua Liang

The effect of heat treatment on the microstructure and properties of Cu-3Ti-1Al alloy was investigated. The microstructure was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), and the hardness and electrical conductivity were tested as well. The results showed that the hardness and electrical conductivity of Cu-3Ti-1Al alloy increased significantly after solid solution and ageing treatment. The strengthening effect of Cu-3Ti-1Al alloy was attributed to the formation of intermetallic phase such as Ti3Al and fine precipitates of coherent β-Cu4Ti. With increase of the aging time and the temperature, the precipitates became coarse and incoherent with Cu matrix, and the discontinuous precipitate β started to grow from grain boundaries toward grain interior, which decreased hardness. As the formation of Ti3Al, β-Cu3Ti and β-Cu4Ti phase can efficiently reduce Ti concentration in Cu matrix. The electrical conductivity of Cu-3Ti-1Al alloy increases. In the range of experiments, the optimal heat treatment process for Cu-3Ti-1Al alloy is solid solution at 850°C for 4h and ageing 500°C for 2h, and the hardness and electrical conductivity are 227HV and 12.3%IACS, respectively.



2020 ◽  
Vol 14 (2) ◽  
pp. 213
Author(s):  
Valentinus Galih Vidia Putra ◽  
Lutfi Zulfikar ◽  
Atin Sumihartanti ◽  
Juliany Ningsih Mohamad ◽  
Yusril Yusuf

This study aims to develop conductive textile materials using a polyester textile yarn by applying a knife coating method and pre-treatment of a tip-cylinder plasma electrode. In this research, carbon ink was coated on polyester staple yarn which was given a pre-treatment with a plasma generator and coated with the knife coating method. The electrical conductivity of conductive yarns produced from this study was divided into two types, as yarns without plasma treatment and with plasma treatment with a ratio of water and carbon ink concentrations of 1:1 and 2:1. The results of the electrical conductivity with plasma treatment and the concentration of carbon ink and water of 1:1 and 1:2 were 69005 (Ωm)-1 and 50144.25 (Ωm)-1, respectively, while the results of the electrical conductivity for threads with concentrations of carbon ink and water of 1:1 and 1:2 without plasma treatment were 18197.64 (Ωm)­‑1  and 8873.54 (Ωm)-1, respectively. The results showed that the concentration of carbon ink and water and plasma treatment affected the conductive value of the yarn. The results also showed that the presence of plasma pre-treatment improved the coating process of conductive ink on the yarn.Keywords: carbon ink; conductive yarn; plasma; textile A B S T R A KPenelitian ini bertujuan untuk mengembangkan bahan tekstil konduktif menggunakan benang tekstil poliester dengan mengaplikasikan metode knife coating dan pre-treatment plasma elektroda tip-cylinder. Pada penelitian ini dilakukan pelapisan dengan tinta karbon pada benang poliester stapel yang diberi perlakuan awal dengan plasma generator dan dilapisi dengan metode pelapisan knife coating. Konduktivitas listrik benang konduktif yang dihasilkan dari penelitian ini dibagi menjadi dua jenis, yaitu benang tanpa perlakuan plasma dan dengan perlakuan plasma dengan perbandingan konsentrasi air dan tinta karbon sebesar 1:1 dan 2:1. Hasil konduktivitas listrik dengan perlakuan plasma dan konsentrasi tinta karbon dan air sebesar 1:1 dan 1:2 masing-masing adalah 69005 (Ωm)‑1 dan 50144,25 (Ωm)-1, sedangkan hasil konduktivitas listrik untuk benang dengan konsentrasi tinta karbon dan air sebesar 1:1 dan 1:2 tanpa perlakuan plasma masing-masing adalah 18197,64 (Ωm)-1 dan 8873,54 (Ωm)-1. Hasil penelitian menunjukkan bahwa konsentrasi tinta karbon dan air serta perlakuan plasma berpengaruh terhadap nilai konduktivitas benang serta adanya pre-treatment plasma dapat meningkatkan proses coating tinta konduktif pada benang.Kata kunci: benang konduktif; plasma; tekstil; tinta karbon 



2018 ◽  
Vol 51 (36) ◽  
pp. 365101 ◽  
Author(s):  
Jinglin Wei ◽  
Zhiqiang Fang ◽  
Junbiao Peng ◽  
Wei Cai ◽  
Zhennan Zhu ◽  
...  


2019 ◽  
Vol 156 ◽  
pp. 188-198 ◽  
Author(s):  
Pabel Cervantes-Avilés ◽  
Yuxiong Huang ◽  
Arturo A. Keller


Sign in / Sign up

Export Citation Format

Share Document