Hybrid neurofuzzy wind power forecast and wind turbine location for embedded generation

2020 ◽  
Vol 45 (1) ◽  
pp. 413-428
Author(s):  
Paul A. Adedeji ◽  
Stephen A. Akinlabi ◽  
Nkosinathi Madushele ◽  
Obafemi O. Olatunji
Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 261
Author(s):  
Tianyang Liu ◽  
Zunkai Huang ◽  
Li Tian ◽  
Yongxin Zhu ◽  
Hui Wang ◽  
...  

The rapid development in wind power comes with new technical challenges. Reliable and accurate wind power forecast is of considerable significance to the electricity system’s daily dispatching and production. Traditional forecast methods usually utilize wind speed and turbine parameters as the model inputs. However, they are not sufficient to account for complex weather variability and the various wind turbine features in the real world. Inspired by the excellent performance of convolutional neural networks (CNN) in computer vision, we propose a novel approach to predicting short-term wind power by converting time series into images and exploit a CNN to analyze them. In our approach, we first propose two transformation methods to map wind speed and precipitation data time series into image matrices. After integrating multi-dimensional information and extracting features, we design a novel CNN framework to forecast 24-h wind turbine power. Our method is implemented on the Keras deep learning platform and tested on 10 sets of 3-year wind turbine data from Hangzhou, China. The superior performance of the proposed method is demonstrated through comparisons using state-of-the-art techniques in wind turbine power forecasting.


2013 ◽  
Vol 14 (3) ◽  
pp. 207-218 ◽  
Author(s):  
Kazuki Ogimi ◽  
Shota Kamiyama ◽  
Michael Palmer ◽  
Atsushi Yona ◽  
Tomonobu Senju ◽  
...  

Abstract In order to solve the problems of global warming and depletion of energy resource, renewable energy systems such as wind generation are getting attention. However, wind power fluctuates due to variation of wind speed, and it is difficult to perfectly forecast wind power. This paper describes a method to use power forecast data of wind turbine generators considering wind power forecast error for optimal operation. The purpose in this paper is to smooth the output power fluctuation of a wind farm and to obtain more beneficial electrical power for selling.


Author(s):  
B. P. Khozyainov

The article carries out the experimental and analytical studies of three-blade wind power installation and gives the technique for measurements of angular rate of wind turbine rotation depending on the wind speeds, the rotating moment and its power. We have made the comparison of the calculation results according to the formulas offered with the indicators of the wind turbine tests executed in natural conditions. The tests were carried out at wind speeds from 0.709 m/s to 6.427 m/s. The wind power efficiency (WPE) for ideal traditional installation is known to be 0.45. According to the analytical calculations, wind power efficiency of the wind turbine with 3-bladed and 6 wind guide screens at wind speedsfrom 0.709 to 6.427 is equal to 0.317, and in the range of speed from 0.709 to 4.5 m/s – 0.351, but the experimental coefficient is much higher. The analysis of WPE variations shows that the work with the wind guide screens at insignificant average air flow velocity during the set period of time appears to be more effective, than the work without them. If the air flow velocity increases, the wind power efficiency gradually decreases. Such a good fit between experimental data and analytical calculations is confirmed by comparison of F-test design criterion with its tabular values. In the design of wind turbines, it allows determining the wind turbine power, setting the geometrical parameters and mass of all details for their efficient performance.


2021 ◽  
Vol 13 (13) ◽  
pp. 7279
Author(s):  
Zbigniew Skibko ◽  
Magdalena Tymińska ◽  
Wacław Romaniuk ◽  
Andrzej Borusiewicz

Wind power plants are an increasingly common source of electricity located in rural areas. As a result of the high variability of wind power, and thus the generated power, these sources should be classified as unstable sources. In this paper, the authors attempted to determine the impact of wind turbine operation on the parameters of electricity supplied to farms located near the source. As a result of the conducted field tests, variability courses of the basic parameters describing the supply voltage were obtained. The influence of power plant variability on the values of voltage, frequency, and voltage distortion factor was determined. To estimate the capacity of the transmission lines, the reactive power produced in the power plant and its effect on the value of the power factor were determined. The conducted research and analysis showed that the wind power plant significantly influences voltage fluctuations in its immediate vicinity (the maximum value registered was close to 2%, while the value required by law was 2.5%). Although all the recorded values are within limits specified by the current regulations (e.g., the THD value is four times lower than the required value), wind turbines may cause incorrect operation of loads connected nearby. This applies mainly to cases where consumers sensitive to voltage fluctuations are installed in the direct vicinity of the power plant.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2287
Author(s):  
Kaina Qin ◽  
Shanshan Wang ◽  
Zhongjian Kang

With the rapid increase in the proportion of the installed wind power capacity in the total grid capacity, the state has put forward higher and higher requirements for wind power integration into the grid, among which the most difficult requirement is the zero-voltage ride through (ZVRT) capability of the wind turbine. When the voltage drops deeply, a series of transient processes, such as serious overvoltage, overcurrent, or speed rise, will occur in the motor, which will seriously endanger the safe operation of the wind turbine itself and its control system, and cause large-scale off-grid accident of wind generator. Therefore, it is of great significance to improve the uninterrupted operation ability of the wind turbine. Doubly fed induction generator (DFIG) can achieve the best wind energy tracking control in a wide range of wind speed and has the advantage of flexible power regulation. It is widely used at present, but it is sensitive to the grid voltage. In the current study, the DFIG is taken as the research object. The transient process of the DFIG during a fault is analyzed in detail. The mechanism of the rotor overcurrent and DC bus overvoltage of the DFIG during fault is studied. Additionally, the simulation model is built in DIgSILENT. The active crowbar hardware protection circuit is put into the rotor side of the wind turbine, and the extended state observer and terminal sliding mode control are added to the grid side converter control. Through the cooperative control technology, the rotor overcurrent and DC bus overvoltage can be suppressed to realize the zero-voltage ride-through of the doubly fed wind turbine, and ensure the safe and stable operation of the wind farm. Finally, the simulation results are presented to verify the theoretical analysis and the proposed control strategy.


2014 ◽  
Vol 670-671 ◽  
pp. 964-967
Author(s):  
Shu Hua Bai ◽  
Hai Dong Yang

Nowadays, energy crisis is becoming increasingly serious. Coal, petroleum, natural gas and other fossil energy tend to be exhausted due to the crazy exploration. In recent decades, several long lasting local wars broke out in large scale in Mideast and North Africa because of the fighting for the limited petroleum. The reusable green energy in our life like enormous wind power, solar power, etc is to become the essential energy. This article is to conduct a comparative exploration of mini wind turbine, with the purpose of finding a good way to effectively deal with the energy crisis.


2021 ◽  
pp. 0309524X2110227
Author(s):  
Kyle O Roberts ◽  
Nawaz Mahomed

Wind turbine selection and optimal hub height positioning are crucial elements of wind power projects. However, in higher class wind speeds especially, over-exposure of wind turbines can lead to a reduction in power generation capacity. In this study, wind measurements from a met mast were validated according to specifications issued by IRENA and NREL. As a first step, it is shown that commercial WTGs from a database may be matched to the wind class and turbulence intensity. Secondly, a wind turbine selection algorithm, based on maximisation of capacity factor, was implemented across the range of WTGs. The selected WTGs were further exposed to an iterative algorithm using pointwise air density and wind shear coefficients. It is shown that a unique maximum capacity factor, and hence wind power generation, exists for a wind turbine, premised on its eventual over-exposure to the wind resource above a certain hub height.


Sign in / Sign up

Export Citation Format

Share Document