Water balance in Alpine catchments by Sentinel data

2021 ◽  
Author(s):  
Roberta Perico ◽  
Philip Brunner ◽  
Paolo Frattini ◽  
Giovanni Battista Crosta
2021 ◽  
Author(s):  
Daniel Bergmeister ◽  
Klaus Klebinder ◽  
Bernhard Kohl ◽  
Ulrich Burger ◽  
Georg Orsi ◽  
...  

<p>Assessing the water balance including subsurface runoff in high Alpine catchments is still a major challenge due to environmental and meteorological complexity, and mostly data-lacking hydrology. The aim of this study is the determination of the water balance components and water budget with focus on approximation of interflow, subsurface runoff and groundwater interactions, depending on sediment and bedrock properties.</p><p>In this process we investigate a small, high data providing Alpine catchment in the Wipp Valley (Tyrol, AT) to evaluate the best modelling approach in order to apply it on catchments along the Austrian Brenner axis. Thus, a direct model comparison of the main study catchment, with its (moderate data providing) neighbouring valley is carried out. The main study catchment (Padaster Valley) covers 11.2 km<sup>2</sup> and is located east of Steinach am Brenner in the Wipp Valley. Due to its partially usage as a deposital site, respectively a landfill for the tunnel excavation material of the Brenner Base Tunnel, this valley represents a highly interesting site in a hydrological aspect. Thus, the Padaster Valley is highly monitored and hence predestined for hydrological investigations. Hydrological data such as discharge is measured high frequently on four gauges, meteorological data on two gauges. An additional study catchment (Navis Valley) covers 63 km<sup>2</sup> and is located northerly next the Padaster Valley. Seven gauges provide meteorological data, however, continuous discharge data is just measured at the valley mouth. Further meteorological data for both areas will be contributed by the ZAMG (Zentralanstalt für Meteorologie und Geodynamik), whose INCA model provide a high spatial resolution dataset of 1km. However, in order to gain a better overall understanding of subsurface runoff and hydrogeological processes, geological data will be considered and incorporated/integrated in the modelling process. This includes geological maps, - cross sections and geophysical analysis, which help to estimate the bedrock topography, and consequently the volume as well as deeper seated hydrogeological properties of the sediment cover. In this context, continuous data from 7 groundwater observation wells provide information regarding groundwater levels and hydraulic head. To increase the model accuracy regarding subsurface flow processes, subsurface-depending runoff types after Pirkl & Sausgruber (2015) are applied. Furthermore, several maps such as land use, surface runoff coefficient and soil map including grain size distribution of the layers have been compiled by in-situ fieldwork for this study. In order to model the water budget, subsurface runoff and overall hydrological slope properties, the distributed hydrological Model WaSIM (Richards version; Schulla, 1997) is applied. The model is based on a modular system which uses physically-based algorithms.</p><p>The present study is been carried out by the Austrian Research Centre for Forests (BFW) in collaboration with the Brenner Base Tunnel (BBT-SE).</p>


2012 ◽  
Vol 43 (4) ◽  
pp. 460-475 ◽  
Author(s):  
Mathew Herrnegger ◽  
Hans-Peter Nachtnebel ◽  
Thomas Haiden

In this paper the third water balance component, the actual evapotranspiration (ETA), is analysed. Although evapotranspiration rates decrease with increasing altitude, it can be concluded that substantial quantitative differences are found among temperature and energy balance-based techniques for estimating the ETA. The objective of this study is to apply a distributed and continuous hydrological model and to utilise standard meteorological datasets with a high spatio-temporal resolution (1 km2 and 60 min) to estimate the evapotranspiration in high Alpine Austrian catchments. Compared with the Hargreaves and Thornthwaite methods the ASCE-Penman-Monteith approach yields substantially higher potential evapotranspiration (ETP) rates, with basin-values up to 24% higher compared with the temperature-based methods. The decrease of ETP with elevation ranges from 6 to 26 mm per 100 m. The ETA rates differ up to 15%, with a decrease of 18–28 mm per 100 m. About 30% of the annual precipitation is evaporated and this implies that even larger correction factors of precipitation are required to satisfy the runoff. The method is demonstrated in basins in the north central Austrian Alps.


2020 ◽  
Vol 34 (22) ◽  
pp. 4319-4333 ◽  
Author(s):  
Marie Arnoux ◽  
Landon J. S. Halloran ◽  
Eléonore Berdat ◽  
Daniel Hunkeler

2003 ◽  
Vol 7 (6) ◽  
pp. 862-876 ◽  
Author(s):  
H. Bach ◽  
M. Braun ◽  
G. Lampart ◽  
W. Mauser

Abstract. Physically-based water balance models require a realistic parameterisation of land surface characteristics of a catchment. Alpine areas are very complex with strong topographically-induced gradients of environmental conditions, which makes the hydrological parameterisation of Alpine catchments difficult. Within a few kilometres the water balance of a region (mountain peak or valley) can differ completely. Hence, remote sensing is invaluable for retrieving hydrologically relevant land surface parameters. The assimilation of the retrieved information into the water balance model PROMET is demonstrated for the Toce basin in Piemonte/Northern Italy. In addition to land use, albedos and leaf area indices were derived from LANDSAT-TM imagery. Runoff, modelled by a water balance approach, agreed well with observations without calibration of the hydrological model. Keywords: PROMET, fuzzy logic based land use classification, albedo, leaf area index


2020 ◽  
Author(s):  
Roberta Perico ◽  
Paolo Frattini ◽  
Marco Celesti ◽  
Roberto Colombo ◽  
Giovanni Battista Crosta

<p>The recognized evidence of global warming demands assessment of the present and future water cycle in Europe and worldwide. Recently, evidence of modified hydrological regime in the Alps under climate change has been documented. In particular, several studies (e.g. Bocchiola, 2014; Soncini et al. 2016) indicated an increase in hydrological flows in autumn and winter in response to snowfall trading with intense rainfall, shorter snow cover during winter, as well as decreased flows during dry spring and summer and large shrinking of glaciers at high altitude. However, according to the IPCC Fifth Assessment Report, it is still necessary to deepen our understanding of the impact of climate change and land use on groundwater recharge and levels in the alpine catchment areas (Cochand et al. 2019).</p><p>For this purpose, a water balance of the last three hydrogeological years (March 2017 - March 2020) was carried out on the Valtellina catchment (northern Italy, Central Italian Alps). This basin is a perfect case study for its wide unconfined aquifer in the floodplain, which makes it highly sensitive to this type of change. Moreover, the management of the water resource is of considerable importance, being crucial in a wide range of sectors (tourism, irrigation, domestic use, energy and industry).</p><p>Due to the extensive and diversified study area (26,000 km<sup>2</sup>) and the low ground data density (7 meteorological stations, 4 surface-water monitoring points, and 9 groundwater monitoring points), the water balance terms were estimated by exploiting and combining Earth Observation data products with ground data, also taking into account the geological and geomorphological characteristics of the basin. In particular, the evapotranspiration and the snow cover were provided, by MOD16A2 (MODIS/Terra Evapotranspiration 8-Day Level-4 Global 500m SIN Grid) and MOD10A2 (MODIS/Terra Snow Cover 8-Day L3 Global 500m SIN Grid, Version 6) satellite data, respectively.</p><p>As a result, the groundwater storage of a wet hydrogeological year compared with the groundwater storage of a dry hydrogeological year allowed analysing the sensitivity of groundwater resources to climate change.</p><p> </p><p>Bocchiola, D.: Long term (1921–2011) Hydrological regime of Alpine catchments in Northern Italy. Advances in Water Resources, 70, 51-64, 2014.</p><p>Cochand, M., Christe, P., Ornstein, P., & Hunkeler, D.: Groundwater storage in high alpine catchments and its contribution to streamflow. Water Resources Research, 55(4), 2613-2630, 2019.</p><p>Soncini, A., Bocchiola, D., Confortola, G., Minora, U., Vuillermoz, E., Salerno, F., Viviano, G., Shrestha, D., Senese, A., Smiraglia, C. and Diolaiuti, G.A.: Future hydrological regimes and glacier cover in the Everest region: The case study of the upper Dudh Koshi basin. Science of the Total Environment, 565, 1084-1101, 2016.</p>


2010 ◽  
Vol 27 ◽  
pp. 111-119 ◽  
Author(s):  
N. Köplin ◽  
D. Viviroli ◽  
B. Schädler ◽  
R. Weingartner

Abstract. Within the framework of this study we identify mesoscale catchments in Switzerland that exhibit sensitivity towards a change in climate with a focus on alterations of the water balance and peak flow conditions. For this study, the hydrological modelling system PREVAH is used, which is a semi-distributed and conceptual yet process-oriented model forced with hourly meteorological input on basis of a spatial resolution of 500×500 m2. We calibrate the model where measured discharge records are available and transfer the calibrated model parameters to ungauged catchments through regionalisation, to arrive at a comprehensive set of model parameters for the entire area of Switzerland. To assess future changes, we apply an extensive set of 16 Regional Climate Models (RCMs) to the catchments. The RCM data are downscaled to a dense network of meteorological stations for the period from 2021 to 2050 using the Delta Change Approach. This downscaling method incorporates a bias correction of the RCM output and provides change rates and values for precipitation and temperature. In the present paper we describe the application of a calibration and regionalisation procedure developed previously for Northern Alpine catchments to Southern catchments. The necessity to differentiate between a Northern and a Southern Alpine region, with their distinct climatologic and physiogeographic features, has proved true as the calibrated parameter sets show systematic differences between those regions, e.g. for the runoff forming parameters percolation rate (PERC) or storage time for quick runoff (KOH). For the Southern Alpine area, we calibrated two thirds of the available catchments, i.e. 23 out of 36, successfully for standard and flood conditions according to a combined model score of a linear and logarithmic Nash-Sutcliffe-Efficiency (NSE, NSEln) and a mean annual volumetric deviation (VDa). The rate of successfully calibrated catchments is rather small in comparison with the results for the Northern Alpine catchments, where 140 out of 159 calibrations have been successful, and the distribution of the Southern catchments is more irregular. However, as the median NSE and NSEln as well as the range of VDa show an overall good model fit, a successful regionalisation may be expected. Next steps are the regionalisation of the Southern Alpine model parameters and the application of climate scenarios to the complete set of catchments, i.e. about 200 Swiss mesoscale catchments with an average area of 150 km2. Thus we can identify process-based relationships between climate sensitivity and catchment characteristics and provide quantitative information on future water balance and peak flow conditions of Swiss mesoscale catchments.


2015 ◽  
Vol 65 ◽  
pp. 175-192 ◽  
Author(s):  
P Hlavinka ◽  
KC Kersebaum ◽  
M Dubrovský ◽  
M Fischer ◽  
E Pohanková ◽  
...  

2017 ◽  
Vol 13 (4) ◽  
pp. 186-197
Author(s):  
Tariq Abed Hussain ◽  
◽  
Ghayda Yaseen AlKindi ◽  
Rana Jawad Kadhim
Keyword(s):  
The City ◽  

Sign in / Sign up

Export Citation Format

Share Document