scholarly journals Evapotranspiration in high alpine catchments – an important part of the water balance!

2012 ◽  
Vol 43 (4) ◽  
pp. 460-475 ◽  
Author(s):  
Mathew Herrnegger ◽  
Hans-Peter Nachtnebel ◽  
Thomas Haiden

In this paper the third water balance component, the actual evapotranspiration (ETA), is analysed. Although evapotranspiration rates decrease with increasing altitude, it can be concluded that substantial quantitative differences are found among temperature and energy balance-based techniques for estimating the ETA. The objective of this study is to apply a distributed and continuous hydrological model and to utilise standard meteorological datasets with a high spatio-temporal resolution (1 km2 and 60 min) to estimate the evapotranspiration in high Alpine Austrian catchments. Compared with the Hargreaves and Thornthwaite methods the ASCE-Penman-Monteith approach yields substantially higher potential evapotranspiration (ETP) rates, with basin-values up to 24% higher compared with the temperature-based methods. The decrease of ETP with elevation ranges from 6 to 26 mm per 100 m. The ETA rates differ up to 15%, with a decrease of 18–28 mm per 100 m. About 30% of the annual precipitation is evaporated and this implies that even larger correction factors of precipitation are required to satisfy the runoff. The method is demonstrated in basins in the north central Austrian Alps.

2019 ◽  
Vol 58 (9) ◽  
pp. 2103-2114 ◽  
Author(s):  
Arjun Adhikari ◽  
Andrew J. Hansen ◽  
Imtiaz Rangwala

AbstractWater balance influences the distribution, abundance, and diversity of plant species across Earth’s terrestrial system. In this study, we examine changes in the water balance and, consequently, the dryland extent across eight ecoregions of the north-central United States by quantifying changes in the growing season (May–September) moisture index (MI) by 2071–99, relative to 1980–2005, under three high-resolution (~4 km) downscaled climate projections (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) of high-emission scenarios (RCP8.5). We find that all ecoregions are projected to become drier as based on significant decreases in MI, except four ecoregions under CNRM-CM5, which projects relatively more moderate warming and much greater increases in precipitation relative to the other two projections. The mean projected MI across the entire study area changes by from +4% to −33%. The proportion of dryland (MI < 0.65) is projected to increase under all projections, but more significantly under the warmer and drier projections represented by CCSM4 and IPSL-CM5A-MR; these two projections also show the largest spatial increases in the arid (33%–53%) and hyperarid (135%–180%) dryland classes and the greatest decrease in the dry subhumid (from −56% to −88%) dryland class. Among the ecoregions, those in the semiarid class have the highest increase in potential evapotranspiration, those in the nondryland and dry subhumid class have the largest decrease in MI, and those in the dry subhumid class have the greatest increase in dryland extent. These changes are expected to have important implications for agriculture, ecological function, biodiversity, vegetation dynamics, and hydrological budget.


2005 ◽  
Vol 9 (1/2) ◽  
pp. 95-109 ◽  
Author(s):  
B. Schaefli ◽  
B. Hingray ◽  
M. Niggli ◽  
A. Musy

Abstract. In high mountainous catchments, the spatial precipitation and therefore the overall water balance is generally difficult to estimate. The present paper describes the structure and calibration of a semi-lumped conceptual glacio-hydrological model for the joint simulation of daily discharge and annual glacier mass balance that represents a better integrator of the water balance. The model has been developed for climate change impact studies and has therefore a parsimonious structure; it requires three input times series - precipitation, temperature and potential evapotranspiration - and has 7 parameters to calibrate. A multi-signal approach considering daily discharge and - if available - annual glacier mass balance has been developed for the calibration of these parameters. The model has been calibrated for three different catchments in the Swiss Alps having glaciation rates between 37% and 52%. It simulates well the observed daily discharge, the hydrological regime and some basic glaciological features, such as the annual mass balance.


2021 ◽  
pp. 54-65
Author(s):  
С.Ю. ЛУПАКОВ ◽  
Т.С. ГУБАРЕВА ◽  
В.В. ШАМОВ ◽  
А.В. РУБЦОВ ◽  
Б.И. ГАРЦМАН ◽  
...  

Статья содержит результаты моделирования стока малого речного бассейна в верховьях р. Уссури с использованием оригинальных данных о стволовом сокодвижении, пересчитанных в объем воды, транспирируемый древостоем. В теплый период 2019 г. на территории Верхнеуссурийского стационара ФНЦ биоразнообразия наземной биоты Восточной Азии ДВО РАН проведен комплекс наблюдений за компонентами влагооборота, позволивший накопить необходимый массив данных для гидрологического моделирования. В дополнение к традиционным водно-балансовым измерениям проводился мониторинг транспирации на основе системы датчиков регистрации водотока в стволах деревьев. Полученные данные точечных наблюдений распространены на масштаб водосбора (площадь около 3.1 км2). Показано, что в теплых и сухих условиях объем суточного суммарного испарения с малого речного бассейна может достигать 8.5 тыс. м3, что больше объема речного стока за тот же период в 5–6 раз, а во время выпадения дождей транспирация деревьев уменьшается практически до нуля. Для расчета водного баланса изучаемого объекта использована гидрологическая модель HBV (Hydrologiska Byråns Vattenbalansavdelning). Ряды суточной потенциальной эвапотранспирации, рассчитанные на основе широко используемых методов Пенмана-Монтейса и Одина, применены в HBV как входные данные. Расчетные суточные значения испарения, по сравнению с полученными на основе данных стволового сокодвижения, оказались выше в 1.5–2 раза, разница сумм испарения за весь теплый период года достигает слоя 100 мм и более. При этом надежной связи между расчетными значениями суточного испарения и измерениями не было обнаружено. Сделан вывод, что использование приборных данных о стволовом сокодвижении в составе входных переменных в гидрологическую модель повышает качество расчетов стока. The article deals with the experience of applying an alternative method for quantifying evapotranspiration volume as input to the hydrological model to simulate runoff of a small catchment located in the upper reaches of the Ussuri River. In the warm period of 2019 at the territory of the Verkhneussuriyskiy station of the Federal Scientific Center of the East Asia Terrestrial Biodiversity (FEB RAS), a set of field measurements was carried out. The measured data were used to calibrate the HBV hydrological model (Hydrologiska Byråns Vattenbalansavdelning). In addition to traditional water-balance measurements, there was assessed the evapotranspiration rate based on sap flow measurements eliminating other parts of water losses. The Tissue Heat Balance technique was applied to measure a sap flow in some individual trees. After that, the obtained data were scaled up to the catchment area (3.1 km2). It is shown that in warm and dry weather conditions, the volume of daily total evaporation from a small catchment can reach 8.5 ths.m3 that is 5-6 times more than the river runoff volume over the same period. During the rainfall events, the transpiration rate in trees decreases to almost zero. To compare the obtained results with the modelled ones, the potential evapotranspiration was also calculated based on well-known Penman-Monteith’s and L. Oudin’s methods that forced HBV model as input. Based on hydrological simulations, these methods overestimated the actual daily evaporation volume up to 2 times in comparison with the sap flow data, and the difference for the warm season reaches 100 mm and more. No reliable relationship was found between the calculated values of daily evaporation rate and the conventionally “measured” ones. Basically, runoff simulations quality was improved while using evapotranspiration volume assessed with the sap flow data. We conclude that water balance via HBV simulations is quite different depending on applied evapotranspiration method. In this case, overestimated volume of evapotranspiration by Penman-Monteith and L. Oudin methods leads to excessive water extraction from the HBV soil moisture storage. If it’s actually not correct, long-term runoff simulations would result in wrong water balance and error accumulation.


HortScience ◽  
1991 ◽  
Vol 26 (5) ◽  
pp. 481e-481
Author(s):  
James R. Schupp

In 1984 trees of `Starkspur Supreme Delicious' apple (Malus domestica Borkh) on 16 rootstocks were planted at 30 sites in North America according to guidelines established for cooperative testing by the North Central Regional Cooperative Project (NC-140). Tree loss and root suckering in the Maine planting have been low, similar to that of other sites. Tree size in Maine is smallest amoung all sites after seven seasons. Trees on Budagovsky 9 (B.9) rootstock were the most precocious, producing significantly higher flower numbers and yield in the third year. Other precocious root-stocks in this planting included C.6, M.26EMLA, M.7EMLA and P.1. After seven years, B.9, C.6 and M.26EMLA were the most productive amoung the dwarf trees, and consequently are the most efficient. P.1 and M.7EMLA were the most productive amoung the more vigorous stocks. This trial will be conducted for 3 more seasons, however it appears that B.9, C.6 and P.1 may have potential as rootstocks for commercial apple orchards in New England.


Author(s):  
Nguyen Thi Hoang Anh ◽  
Mai Kim Lien

Climate change is driving dangerous and more unpredictable weather. It has broken historical records of hydro-meteorological observations, consequently leading challenges in operational forecasting. In order to improve crop yield and reduce impacts of climate change on agricultural production, it is necessary to obtain sources of weather information. The estimations of rainfall and PET can enable us to identify plant growth and water supply capacity for any plant in the mountainous areas at Quy Hop District, Nghe An (one part of the North Central Coast) on a monthly basis. The updated information on weather forecasting technology and the application of modern technology responding to climate change in Quy Hop provided results related to cumulative rainfall chart. It can forecast accurately the plant growth and the best time for watering plants and plays an important role in the agricultural production.  


2020 ◽  
Author(s):  
Valentin Mansanarez ◽  
Guillaume Thirel ◽  
Olivier Delaigue ◽  
Benoit Liquet

&lt;p&gt;Streamflow estimation from rain events is a delicate exercise. Watersheds are complex natural systems and their response to rainfall events is influenced by many factors. Hydrological rainfall-runoff modelling is traditionally used to understand those factors by predicting discharges from precipitation data. These models are simplified conceptualisations and thus still struggle when facing some particular processes linked to the catchment. Among those processes, the tide influence on river discharges is rarely accounted for in hydrological modelling when estimating streamflow series at river mouth areas. Instead, estimated streamflow series are sometimes corrected by coefficients to account for the tide effect.&lt;/p&gt;&lt;p&gt;In this presentation, we explored a semi-distributed hydrological model by adapting it to account for tidal-influence in the river mouth area. This model uses observed spatio-temporal rainfall and potential evapotranspiration databases to predict streamflow at gauged and ungauged locations within the catchment. The hydrological model is calibrated using streamflow observations and priors on parameter values to calibrate each model parameters of each sub-catchments. A drift procedure in the calibration process is used to ensure continuity in parameter values between upstream and downstream successive sub-catchments.&lt;/p&gt;&lt;p&gt;This novel approach was applied to a tidal-affected catchment: the Adour&amp;#8217;s catchment in southern France. Estimated results were compared to simulations without accounting for the tidal influence. Results from the new hydrological model were improved at tidal-affected locations of the catchment. They also show similar estimations in tidal-unaffected part of the catchment.&lt;/p&gt;


2005 ◽  
Vol 2 (1) ◽  
pp. 73-117 ◽  
Author(s):  
B. Schaefli ◽  
B. Hingray ◽  
M. Niggli ◽  
A. Musy

Abstract. In high mountainous catchments, the spatial precipitation and therefore the overall water balance is generally difficult to estimate. The present paper describes the structure and calibration of a semi-lumped conceptual glacio-hydrological model for the joint simulation of daily discharge and annual glacier mass balance that represents a better integrator of the water balance. The model has been developed for climate change impact studies and has therefore a parsimonious structure; it requires three input times series – precipitation, temperature and potential evapotranspiration – and has 7 parameters to calibrate. A multi-signal approach considering daily discharge and – if available – annual glacier mass balance has been developed for the calibration of these parameters. The model has been calibrated for three different catchments in the Swiss Alps having glaciation rates between 37% and 52%. It simulates well the observed daily discharge, the hydrological regime and some basic glaciological features, such as the annual mass balance.


2019 ◽  
Vol 13 (26) ◽  
pp. 51-57
Author(s):  
Qusai Y. AL-Kubaisi

Mandali Basin is located between latitudes (33◦ 39' 00" and 33◦54' 55") to the north and longitudes (45ο 11' 00" and 45ο 40' 00") to theeast; to the east of Diyala province at the Iraqi-Iranian border; thebasin area is approximately 491 km2.From the study of climate reality of the basin between 1990-2013and assessment of the basic climate transactions, it was foundthat the annual rate of rainfall is 253.02 mm, the relative humidity(44.4%), the temperature (21.3 ◦C), wind speed (2.08 m /sec.),sunshine (8.27 h/day) and evaporation of the basin class (a) (271.98mm) and corrected potential evapotranspiration (80.03 mm). Theresults of the data analysis show that, there are three basic periods ofclimate variability wet period, semi wet and dry period.This study shows that, there is water surplus of 60.87% of therainfall amount which is equivalent to 154.03 mm, the amount ofrunoff is 7.47 mm, and the amount of water recharge is 146.56mm.


HortScience ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 1162e-1162
Author(s):  
James R. Schupp

In 1984 trees of `Starkspur Supreme Delicious' apple (Malus domestica, Borkh) on 16 rootstocks were planted at 32 sites In Morth America according to guidelines established for cooperative testing by the North Central Regional Cooperative Project (NC--140). Tree loss and root suckering in the Maine planting have been low, similar to that of other sites. Tree size in Maine is smallest amoung all sites after eight seasons. Trees on Budagovsky 9 (B.9) rootstock were the most precocious, producing significantly higher flower numbers and yield in the third year. Other precocious rootstocks in this planting included C.6, M.26EMLA, M.7EMLA and P.l. After eight years, B.9, C.6 and M.26EMLA were the most productive amoung the dwarf trees. P.l and M.7EMLA were the most productive amoung the more vigorous stocks. Heavy croping trees on dwarf rootstocks leaned more due to hurricane winds than larger better anchored trees which lost a larger proportion of their crop. B.9, C.6 and P.1 may have potential as rootstocks for commercial apple orchards in New England.


Sign in / Sign up

Export Citation Format

Share Document