Optimization of X-ray Flare Time Profile Parameters for Space Weather Applications

2021 ◽  
Author(s):  
Justyna M. Sokół ◽  
Maher Dayeh ◽  
Radoslav Bucik ◽  
Kim Moreland
Keyword(s):  
2015 ◽  
Vol 11 (S320) ◽  
pp. 134-137
Author(s):  
John P. Pye ◽  
Simon R. Rosen

AbstractWe present estimates of cool-star X-ray flare rates determined from the XMM-Tycho survey (Pyeet al. 2015, A&A, 581, A28), and compare them with previously published values for the Sun and for other stellar EUV and white-light samples. We demonstrate the importance of applying appropriate corrections, especially in regard to the total, effective size of the stellar sample. Our results are broadly consistent with rates reported in the literature for Kepler white-light flares from solar-type stars, and with extrapolations of solar flare rates, indicating the potential of stellar X-ray flare observations to address issues such as ‘space weather’ in exoplanetary systems and our own solar system.


2019 ◽  
Vol 9 ◽  
pp. A43 ◽  
Author(s):  
Edward M. B. Thiemann ◽  
Francis G. Eparvier ◽  
Don Woodraska ◽  
Phillip C. Chamberlin ◽  
Janet Machol ◽  
...  

The Geostationary Operational Environmental Satellite R (GOES-R) series of four satellites are the next generation NOAA GOES satellites. Once on orbit and commissioned, they are renamed GOES 16–19, making critical terrestrial and space weather measurements through 2035. GOES 16 and 17 are currently on orbit, having been launched in 2016 and 2018, respectively. The GOES-R satellites include the Extreme Ultraviolet (EUV) and X-ray Irradiance Sensors (EXIS) instrument suite, which measures calibrated solar irradiance in eight lines or bands between 25 nm and 285 nm with the Extreme Ultraviolet Sensors (EUVS) instrument. EXIS also includes the X-Ray Sensor (XRS) instrument, which measures solar soft X-ray irradiance at the legacy GOES bands. The EUVS Measurements are used as inputs to the EUVS Model, a solar spectral irradiance model for space weather operations that predicts irradiance in twenty-two 5 nm wide intervals from 5 nm to 115 nm, and one 10 nm wide interval from 117 to 127 nm at 30 s cadence. Once fully operational, NOAA will distribute the EUVS Model irradiance with 1 min latency as a primary space weather data product, ushering in a new era of rapid dissemination and measurement continuity of EUV irradiance spectra. This paper describes the EUVS Model algorithms, data sources, calibration methods and associated uncertainties. Typical model (relative) uncertainties are less than ~5% for variability at time-scales longer than 6 h, and are ~25% for solar flare induced variability. The absolute uncertainties, originating from the instruments used to calibrate the EUVS Model, are ~10%. Examples of model results are presented at both sub-daily and multi-year timescales to demonstrate the model’s capabilities and limitations. Example solar flare irradiances are also modeled.


1993 ◽  
Vol 141 ◽  
pp. 258-262
Author(s):  
Taro Sakao

AbstractWe present hard X-ray imaging observations by Yohkoh of the 15 November, 1991 flare. The pre-impulsive and the impulsive phase observations are summarized as follows: (1) Hard X-ray sources in the precursor (or pre–impulsive) phase appear in a much wider area compared with the impulsive phase sources and they show clear evolution just before the onset of the impulsive phase. This suggests that some global re-structuring of coronal magnetic fields led to the impulsive energy release. (2) In the impulsive phase, at the peaks of the individual spikes of the time profile, the bulk of the hard X-ray emission (above 20 keV) originates from the footpoints of the flaring loop. At the valleys between the spikes, X-rays below 30 keV are emitted from near the loop top, while higher energy ones (above 30 keV) are still emitted from the footpoints. Such behavior of hard X-ray sources can be explained by the partial precipitation model.


2018 ◽  
Vol 8 ◽  
pp. A47 ◽  
Author(s):  
Stephen W. Kahler ◽  
Alan. G. Ling

Solar flare X-ray peak fluxes and fluences in the 0.1–0.8 nm band are often used in models to forecast solar energetic particle (SEP) events. Garcia (2004) [Forecasting methods for occurrence and magnitude of proton storms with solar soft X rays, Space Weather, 2, S02002, 2004] used ratios of the 0.05–0.4 and 0.1–0.8 nm bands of the X-ray instrument on the GOES spacecraft to plot inferred peak flare temperatures versus peak 0.1–0.8 nm fluxes for flares from 1988 to 2002. Flares associated with E > 10 MeV SEP events of >10 proton flux units (pfu) had statistically lower peak temperatures than those without SEP events and therefore offered a possible empirical forecasting tool for SEP events. We review the soft and hard X-ray flare spectral variations as SEP event forecast tools and repeat Garcia’s work for the period 1998–2016, comparing both the peak ratios and the ratios of the preceding 0.05–0.4 nm peak fluxes to the later 0.1–0.8 nm peak fluxes of flares >M3 to the occurrence of associated SEP events. We divide the events into eastern and western hemisphere sources and compare both small (1.2–10 pfu) and large (≥300 pfu) SEP events with those of >10 pfu. In the western hemisphere X-ray peak ratios are statistically lower for >10 pfu SEP events than for non-SEP events and are even lower for the large (>300 pfu) events. The small SEP events, however, are not distinguished from the non-SEP events. We discuss the possible connections between the flare X-ray peak ratios and associated coronal mass ejections that are presumed to be the sources of the SEPs.


2021 ◽  
Vol 507 (3) ◽  
pp. 3936-3951
Author(s):  
Kristopher Cooper ◽  
Iain G Hannah ◽  
Brian W Grefenstette ◽  
Lindsay Glesener ◽  
Säm Krucker ◽  
...  

ABSTRACT We investigate the spatial, temporal, and spectral properties of 10 microflares from AR12721 on 2018 September 9 and 10 observed in X-rays using the Nuclear Spectroscopic Telescope ARray and the Solar Dynamic Observatory’s Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager. We find GOES sub-A class equivalent microflare energies of 1026–1028 erg reaching temperatures up to 10 MK with consistent quiescent or hot active region (AR) core plasma temperatures of 3–4 MK. One microflare (SOL2018-09-09T10:33), with an equivalent GOES class of A0.1, has non-thermal hard X-ray emission during its impulsive phase (of non-thermal power ∼7 × 1024 erg s−1) making it one of the faintest X-ray microflares to have direct evidence for accelerated electrons. In 4 of the 10 microflares, we find that the X-ray time profile matches fainter and more transient sources in the extreme-ultraviolet, highlighting the need for observations sensitive to only the hottest material that reaches temperatures higher than those of the AR core (>5 MK). Evidence for corresponding photospheric magnetic flux cancellation/emergence present at the footpoints of eight microflares is also observed.


2020 ◽  
Author(s):  
Manuel Flores Soriano ◽  
Consuelo Cid

<p>SMOS is an Earth observing satellite that is been adapted to provide full polarization observations of the Sun at 1.4 GHz 24 hours a day. Its solar radio observations from the last decade will be released to the community by the middle of this year. In this presentation we show the capabilities of SMOS as a solar radio observatory and compare some of the most relevant radio bursts with data from GOES, LASCO, SDO and RSTN. We show how SMOS responds to different kinds of solar flares depending on their x-ray flux, and the kind of mass ejection or solar dimming that they have produced, if any. In addition to this we also show the potential of SMOS as a space weather tool to monitor GNSS satellites signal fades and to provide an early warning of Earth-directed coronal mass ejections.</p>


1995 ◽  
Vol 151 ◽  
pp. 168-169
Author(s):  
S.M. White ◽  
R. Pallavicini ◽  
J. Lim

The Japanese satellite ASCA carries X-ray detectors which combine excellent sensitivity and high spectral resolution. We observed the young, rapidly-rotating K dwarf AB Doradus with ASCA in November 1993. The star’s X-ray flux was essentially steady for the first half of the observation, and then a series of flares occurred during the second half. The flares showed rise times of 30 minutes and decay times of several hours. The quiescent X-ray luminosity was 2 × 1030 ergs s−1 (0.5-10 keV). At the flare peaks, LX(> 0.5 keV)/Lbol = .002.AB Dor has a relatively high count rate in the ASCA data and we can obtain high-quality spectra for different periods of the light curve. In Fig. 1 we present spectra corresponding to the period of quiescence, the rising phase and peak of each of the three flares combined, and the decay periods of each of the flares combined. The rise/peak curve (upper) has been multiplied by 2 for purposes of display. We have subtracted the quiescent spectrum from the flare spectra (i.e., used it as a background spectrum) for this display and subsequent analysis.The detailed differences between these spectra display the importance of the high spectral resolution provided by ASCA. One important difference, not readily evident in this figure, is the Fe K line complex at 6.4-6.7 keV. This line, a diagnostic of hot plasma, is strong in the rise/peak spectrum, moderate in the decay spectrum and weak in the quiescent spectrum. A time profile of the counts in this energy range shows little significant emission during the quiescent periods but strong emission at the flare peaks.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
S. Mousavi Nasab ◽  
M. Aboutalebi ◽  
S. H. Seyedein ◽  
A. Molavi Kakhki ◽  
J. Vahdati Khaki

Single-phase NiTi was fabricated through the thermal explosion mode of combustion synthesis of mechanically activated powders. Combustion and ignition temperatures of combustion synthesis were investigated in different milling times. In this process, equiatomic powder mixtures of nickel and titanium were activated by planetary ball mill and pressed into disk-shaped pellets then heated in a tube furnace, while temperature-time profile was recorded. X-ray diffraction analysis (XRD) was performed on milled powders as well as synthesized samples. Scanning electron microscopy (SEM) was also used to study the microstructural evolution during milling. The results showed that there was a threshold milling time to obtain single-phase NiTi. It was also seen that the ignition temperature and combustion temperature were reduced significantly by increasing milling time.


2008 ◽  
Vol 17 (09) ◽  
pp. 1359-1362 ◽  
Author(s):  
◽  
S. D. VERGANI ◽  
C. GUIDORZI

GRB 070311 was a long burst that triggered INTEGRAL. We present prompt γ-ray, early NIR/optical, late optical and X-ray data on this burst and its afterglow. Interestingly, the H-band light curve acquired with REM exhibits two pulses at 80 and 140 s after the peak of the γ-ray burst, with possible evidence for a contemporaneous faint γ-ray tail. The late optical and X-ray afterglow underwent a rebrightening between 3 × 104 and 2 × 105 s after the burst with energy comparable with that of the prompt emission extrapolated in the X-ray band. After fitting the early γ-ray and optical light curves, we modelled the time profile of the late rebrightening as the time-rescaled version of the prompt γ-ray pulse over an underlying power law. This result supports a common origin for both prompt and late X-ray/optical afterglow rebrightening of GRB 070311 within the external shock scenario.


Sign in / Sign up

Export Citation Format

Share Document