Complex interplay between organic and secondary inorganic aerosols with ambient relative humidity implicates the aerosol liquid water content over India during wintertime

2022 ◽  
Author(s):  
Amar Krishna Gopinath ◽  
Subha S Raj ◽  
Snehitha Kommula ◽  
Christi Jose ◽  
Upasana Panda ◽  
...  
2018 ◽  
Author(s):  
Konrad Deetz ◽  
Heike Vogel ◽  
Sophie Haslett ◽  
Peter Knippertz ◽  
Hugh Coe ◽  
...  

Abstract. Water uptake can significantly increase the size and therefore the optical properties of aerosols. In this study, the regional-scale model framework COSMO-ART is applied to Southern West Africa (SWA) for a summer monsoon process study on 2–3 and 6–7 July 2016. The high moisture and aerosol burden in the monsoon layer makes SWA favorable to quantify properties that determine the aerosol liquid water content and its impact on radiative transfer. Given the marked diurnal cycle in SWA, the analysis is separated into three characteristic phases: (a) Atlantic Inflow progression phase (15–2 UTC), when winds from the Gulf of Guinea accelerate in the less turbulent evening and nighttime boundary layer, (b) Moist morning phase (3–8 UTC), when the passage of the Atlantic Inflow front leads to overall cool and moist conditions over land and (c) Daytime drying phase (9–15 UTC), in which the Atlantic Inflow front re-establishes with the inland heating initiated after sunrise. This diurnal cycle imprints, via the relative humidity, also the aerosol liquid water content. We analyzed the impact of relative humidity and clouds on the aerosol liquid water content. As shown by other studies, the accumulation mode particles are the dominant contributor of aerosol liquid water. We find aerosol growth factors of 2 (4) for submicron (coarse) mode particles, leading to a substantial increase of mean aerosol optical depth from 0.2 to 0.7. Considering the aerosol liquid water content leads to a decrease in shortwave radiation of about 20 W m−2, while longwave effects appear to be insignificant, especially during nighttime. The estimated relationships between total column aerosol liquid water and radiation are −305 ± 39 W g−1 (shortwave in-cloud), −114 ± 42 W g−1 (shortwave off-cloud) and about −10 W g−1 (longwave). The results highlight the need to consider the relative humidity dependency of aerosol optical depth in atmospheric models, particularly in moist tropical environments, where their effect on radiation can be very large.


2014 ◽  
Vol 14 (12) ◽  
pp. 6417-6426 ◽  
Author(s):  
Y. X. Bian ◽  
C. S. Zhao ◽  
N. Ma ◽  
J. Chen ◽  
W. Y. Xu

Abstract. Water can be a major component of aerosol particles, also serving as a medium for aqueous-phase reactions. In this study, a novel method is presented to calculate the aerosol liquid water content at high relative humidity based on measurements of aerosol hygroscopic growth factor, particle number size distribution and relative humidity in the Haze in China (HaChi) summer field campaign (July–August 2009) in the North China Plain. The aerosol liquid water content calculated using this method agreed well with that calculated using a thermodynamic equilibrium model (ISORROPIA II) at high relative humidity (>60%) with a correlation coefficient of 0.96. At low relative humidity (<60%), an underestimation was found in the calculated aerosol liquid water content by the thermodynamic equilibrium model. This discrepancy mainly resulted from the ISORROPIA II model, which only considered limited aerosol chemical compositions. The mean and maximum values of aerosol liquid water content during the HaChi campaign reached 1.69 × 10−4 g m−3 and 9.71 × 10−4 g m−3, respectively. A distinct diurnal variation of the aerosol liquid water content was found, with lower values during daytime and higher ones at night. The aerosol liquid water content depended strongly on the relative humidity. The aerosol liquid water content in the accumulation mode dominated the total aerosol liquid water content.


2014 ◽  
Vol 14 (3) ◽  
pp. 4089-4118
Author(s):  
Y. X. Bian ◽  
C. S. Zhao ◽  
N. Ma ◽  
J. Chen ◽  
W. Y. Xu

Abstract. Water can be a major component of an aerosol particle. Also water serves as a medium for aqueous-phase reactions in aerosols. In this study, a novel method is presented to calculate the aerosol liquid water content at high relative humidity based on measurements of aerosol hygroscopic growth factor, particle number size distribution and relative humidity in the Haze in China (HaChi) summer field campaign (July–August 2009) in the North China Plain. The aerosol liquid water content calculated using this method agreed well with that calculated using a thermodynamic equilibrium model (ISORROPIA II) at high relative humidity (>60 %) with a correlation coefficient of 0.9658. At low relative humidity (<60%), an underestimation was found in the calculated aerosol liquid water content by the thermodynamic equilibrium model. This discrepancy mainly resulted from the ISORROPIA II model, which only considered limited aerosol chemical compositions. The mean and maximum values of aerosol liquid water content during the HaChi campaign reached 1.69 × 10−4; g m−3 and 9.71 × 10−4; g m−3, respectively. A distinct diurnal variation of the aerosol liquid water content was found, with lower values during daytime and higher ones at night. The aerosol liquid water content depended strongly on the relative humidity. The aerosol liquid water content in the accumulation mode dominated the total aerosol liquid water content.


2018 ◽  
Vol 18 (19) ◽  
pp. 14271-14295 ◽  
Author(s):  
Konrad Deetz ◽  
Heike Vogel ◽  
Sophie Haslett ◽  
Peter Knippertz ◽  
Hugh Coe ◽  
...  

Abstract. Water uptake can significantly increase the size and therefore alters the optical properties of aerosols. In this study, the regional-scale model framework COSMO-ART is applied to southern West Africa (SWA) for a summer monsoon process study on 2–3 and 6–7 July 2016. The high moisture and aerosol burden in the monsoon layer makes SWA favorable to quantify properties that determine the aerosol liquid water content and its impact on radiative transfer. Given the marked diurnal cycle in SWA, the analysis is separated into three characteristic phases: (a) the Atlantic inflow progression phase (15:00–02:00 UTC), when winds from the Gulf of Guinea accelerate in the less turbulent evening and nighttime boundary layer, (b) the moist morning phase (03:00–08:00 UTC), when the passage of the Atlantic inflow front leads to overall cool and moist conditions over land, and (c) the daytime drying phase (09:00–15:00 UTC), in which the Atlantic inflow front reestablishes with the inland heating initiated after sunrise. This diurnal cycle also impacts, via relative humidity, the aerosol liquid water content. We analyzed the impact of relative humidity and clouds on the aerosol liquid water content. As shown by other studies, accumulation-mode particles are the dominant contributor of aerosol liquid water. We find aerosol growth factors of 2 (4) for submicron (coarse-mode) particles, leading to a substantial increase in mean aerosol optical depth from 0.2 to 0.7. Considering the aerosol liquid water content leads to a decrease in shortwave radiation of about 20 W m−2, while longwave effects appear to be insignificant, especially during nighttime. The estimated relationships between total column aerosol liquid water and radiation are -305±39 W g−1 (shortwave in-cloud), -114±42 W g−1 (shortwave off-cloud) and about −10 W g−1 (longwave). The results highlight the need to consider the relative humidity dependency of aerosol optical depth in atmospheric models, particularly in moist tropical environments where their effect on radiation can be very large.


Sensors ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. 647 ◽  
Author(s):  
Carlos Pérez Díaz ◽  
Jonathan Muñoz ◽  
Tarendra Lakhankar ◽  
Reza Khanbilvardi ◽  
Peter Romanov

1981 ◽  
Vol 27 (95) ◽  
pp. 175-178 ◽  
Author(s):  
E. M. Morris

Abstract Field trials show that the liquid-water content of snow can be determined simply and cheaply by a version of Bader’s solution method.


1994 ◽  
Vol 19 ◽  
pp. 92-96 ◽  
Author(s):  
TH. Achammer ◽  
A. Denoth

Broadband measurements of dielectric properties of natural snow samples near or at 0°C are reported. Measurement quantities are: dielectric permittivity, loss factor and complex propagation factor for electromagnetic waves. X-band measurements were made in a cold room in the laboratory; measurements at low and intermediate frequencies were carried out both in the field (Stubai Alps, 3300 m; Hafelekar near Innsbruck, 2100 m) and in the cold room. Results show that in the different frequency ranges the relative effect on snow dielectric properties of the parameters: density, grain-size and shape, liquid water content, shape and distribution of liquid inclusions and content of impurities, varies significantly. In the low-frequency range the influence of grain-size and shape and snow density dominates; in the medium-frequency range liquid water content and density are the dominant parameters. In the microwave X-band the influence of the amount, shape and distribution of liquid inclusions and snow density is more important than that of the remaining parameters.


Sign in / Sign up

Export Citation Format

Share Document