scholarly journals Antimicrobial activity of Satureja Khuzestanica Jamzad and Satureja bachtiarica Bunge essential oils against Shigella flexneri and Escherichia coli in table cream containing Lactobacillus plantarum LU5

2020 ◽  
Vol 8 (11) ◽  
pp. 5907-5915
Author(s):  
Seyed Mohammad Bagher Hashemi ◽  
Diako Khodaei
Food Control ◽  
2010 ◽  
Vol 21 (11) ◽  
pp. 1458-1465 ◽  
Author(s):  
Nadine Yossa ◽  
Jitendra Patel ◽  
Patricia Miller ◽  
Y. Martin Lo

2019 ◽  
Vol 6 (2) ◽  
pp. 181
Author(s):  
Laila Nur Rohma ◽  
Laila Nur Rohma ◽  
Osfar Sjofjan ◽  
M. Halim Natsir

ABSTRAK                                                                        Imbuhan pakan unggas dapat berasal dari bahan herbal yang mengandung berbagai komponen aktif yang bermanfaat bagi pertumbuhan ternak.Temu putih dan jahe gajah dapat dimanfaatkan sebagai imbuhan pakan karena mengandung minyak atsiri yang dapat berperan sebagai agen antibakteri. Penelitian ini bertujuan untuk mengetahui komponen penyusun minyak atsiri dan aktivitas antimikroba pada rimpang temu putih dan jahe gajah. Penelitian dilakukan dengan percobaan in vitro menggunakan temu putih dan jahe gajah yang diolah menjadi bentuk ekstrak minyak atsiri temu putih dan jahe gajah sebagai materi uji komposisi penyusun minyak atsiri serta bentuktepung dan enkapsulasi sebagai materi uji aktivitas antimikroba. Komposisi minyak atsiri temu putih terdiri dari lima komponen penyusun dengan cis-1,7-octadien-3-yl acetat sebagai komponen utama. Komposisi minyak atsiri jahe gajah terdiri dari tujuh komponen dan benzene,1-(1,5-dimethyl-4-hexenyl)-4-methyl-(CAS) ar-curcumene sebagai komponen utama. Minyak atsiri yang terkandung pada temu putih dan jahe gajah mempunyai peran dalam menghambat mikroba. Uji komposisi penyusun minyak atsiri menggunakan alat GC-MS dan uji aktivitas antimikroba menggunakan metode disc diffusion dan. Hasil dari uji aktivitas antimikroba menunjukkan bahwa temu putih dan jahe gajah dalam bentuk tepung dan enkapsulasi memiliki perbedaan yang sangat nyata (P<0,01) terhadap aktivitas antimikroba pada bakteri asam laktat, Escherichia coli dan Salmonella sp. Campuran temu putih dan jahe gajah (1:1) menunjukkan kemampuan terbaik dalam menghambat pertumbuhan bakteri patogen dengan diameter zona hambat 5,70±0,14 mm  (Escherichia coli) dan 6,88±0,45 mm (Salmonella sp.).Kata Kunci : antimikroba, fitobiotik, jahe gajah, minyak atsiri, temu putihABSTRACTThe poultry feed additives can contain herbal ingredients that contain various beneficial components for livestock growth. White turmeric and giant ginger can be used as feed additives because they contain essential oils that can be used as antibacterial agents. This study aims to determine the constituent components of essential oils and antimicrobial activity in white turmeric and giant ginger rhizomes. The study was carried out by in vitro experiments using white turmeric and giant ginger which were processed into the form of essential oil extract as material for the composition of essential oils test, and powder and encapsulation form as antimicrobial activity test material. The composition of essential oils of white turmeric consists of five constituent components with cis-1,7-octadien-3-yl acetate as the main component. The composition of giant ginger essential oil consists of seven components with benzene, 1- (1,5-dimethyl-4-hexenyl) -4-methyl- (CAS) ar-curcumene as the main component. Essential oils contained in the white turmeric and giant ginger have a role in inhibiting microbes. The composition of the essential oil tested using GC-MS and the antimicrobial activity test used the disc diffusion method. The results of the antimicrobial activity test showed that white turmeric and giant ginger in powder and encapsulation form had significant differences (P <0.01) on antimicrobial activity in lactic acid bacteria, Escherichia coli and Salmonella sp. The mixture of white turmeric and giant ginger (1: 1) showed the best ability to inhibit the growth of pathogenic bacteria with inhibitory zone diameters of 5.70 ± 0.14 mm (Escherichia coli) and 6.88 ± 0.45 mm (Salmonella sp.).Keywords: antimicrobial, essential oil, giant ginger, phytobiotic, white turmeric


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 147 ◽  
Author(s):  
Marlon Cáceres ◽  
William Hidalgo ◽  
Elena Stashenko ◽  
Rodrigo Torres ◽  
Claudia Ortiz

Both the ability of bacteria to form biofilms and communicate through quorum sensing allows them to develop different survival or virulence traits that lead to increased bacterial resistance against conventional antibiotic therapy. Here, seventeen essential oils (EOs) were investigated for the antimicrobial, antibiofilm, and anti-quorum sensing activities on Escherichia. coli O157:H7, Escherichia coli O33, and Staphylococcus epidermidis ATCC 12228. All essential oils were isolated from plant material by using hydrodistillation and analyzed by GC-MS. The antimicrobial activity was performed by using the microdilution technique. Subinhibitory concentrations of each EO were assayed for biofilm inhibition in both bacterial strains. Quantification of violacein in Chromobacterium violaceum CV026 was performed for the anti-quorum sensing activity. The cytotoxicity activity of the EOs was evaluated on Vero cell line by using MTT method. Thymol-carvacrol-chemotype (I and II) oils from Lippia origanoides and Thymus vulgaris oil exhibited the higher antimicrobial activity with MIC values of 0.37–0.75 mg/mL. In addition, these EOs strongly inhibited the biofilm formation and violacein (QS) production in a concentration-dependent manner, highlighting thymol-carvacrol-chemotype (II) oil as the best candidate for further studies in antibiotic design and development against bacterial resistance.


2019 ◽  
Vol 40 (5) ◽  
pp. 1937
Author(s):  
Stephanie Pedrosa de Oliveira ◽  
Gabriel Santos Persiquini Cunha ◽  
João Paulo Bicalho Prates ◽  
Francine Souza Alves Fonseca ◽  
Keicy Sandy Silvestre de Souza ◽  
...  

The objective was to verify the antibacterial activity of lemongrass and clove oils against Escherichia coli isolated from poultry feces, Staphylococcus aureus isolated from swine and poultry feces and Salmonella sp. isolated from swine and bovine feces. The antimicrobial activity was evaluated by the disc diffusion test using different concentrations of the oils: 160, 80, 40, 20 and 10 ?l ml -1. The multi-resistance of strains relative to that of conventional antimicrobials was also evaluated by the disk diffusion technique, using Multiple Antibiotic Resistance (MAR) index. The oils were characterized based on the results of chromatographic analyses, of which, analysis of lemongrass has been previously published (AZEVEDO et al., 2016). Lemongrass and clove essential oils presented citral and eugenol as the major compound, respectively. The concentrations of the essential oils had a significant effect on the extent of the growth inhibition halo and the coefficient of determination (r²) was higher than 0.80. Clove essential oil generated the largest zone of inhibition when tested against Escherichia coli and S. aureus from poultry feces and Salmonella sp. from the feces of swine, while lemongrass essential oil presented better results against S. aureus isolated from swine feces and Salmonella sp. from bovine feces. S. aureus and Salmonella sp. were multi-resistant to the antimicrobials tested. It is concluded that the essential oils tested have antimicrobial activity against bacteria isolated from bovine, swine, and poultry feces and that this activity is proportional to the concentration of oils and the microorganisms studied.


Author(s):  
GANDONOU Dossa Clément ◽  
BAMBOLA Bouraïma ◽  
TOUKOUROU Habib ◽  
GBAGUIDI Ahokannou Fernand ◽  
DANSOU Christian ◽  
...  

Present study involves the study of the chemical composition of the essential oils extracted from the leaves by gas chromatography and gas chromatography coupled with mass spectrometry of Lippia multiflora harvested in the regions of Kétou, Savalou, Bohicon and Mono and tested by the well diffusion method against pathogenic microorganisms. The essential oils studied are terpene compounds, aromatic compounds, aliphatic compounds and other natural substances. The inhibition zone diameters determined allowed us to evaluate their degree of germ sensitivity of the strains tested. Essential oils extracted from Lippia multiflora harvested in these areas have the most pronounced antimicrobial activity. In total, the essential oils tested have different and specifically a degree of sensitivity against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Proteus mirabilis A24974, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa except that harvested in the Savalou who does not have no degree of sensitivity on Pseudomonas aeruginosa. This work paves the way for food preservation with extracted natural substances and also the formulation of natural antimicrobials for this fact.


2015 ◽  
Vol 10 (6) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Prabodh Satyal ◽  
Bhuwan K. Chhetri ◽  
Noura S. Dosoky ◽  
Ambika Poudel ◽  
William N. Setzer

The essential oil from the dried rhizome of Nardostachys grandiflora, collected from Jaljale, Nepal, was obtained in 1.4% yield, and a total of 72 compounds were identified constituting 93.8% of the essential oil. The rhizome essential oil of N. grandiflora was mostly composed of calarene (9.4%), valerena-4,7(11)-diene (7.1%), nardol A (6.0%), 1(10)-aristolen-9-ol (11.6%), jatamansone (7.9%), valeranal (5.6%), and cis-valerinic acid (5.7%). The chemical composition of N. grandiflora rhizome oil from Nepal is qualitatively very different than those from Indian, Chinese, and Pakistani Nardostachys essential oils. In this study we have evaluated the chemical composition and biological activities of N. grandiflora from Nepal. Additionally, 1(10)-aristolen-9-ol was isolated and the structure determined by NMR, and represents the first report of this compound from N. grandiflora. N. grandiflora rhizome oil showed in-vitro antimicrobial activity against Bacillus cereus, Escherichia coli, and Candida albicans (MIC = 156 μg/mL), as well as in-vitro cytotoxic activity on MCF-7 cells.


1970 ◽  
Vol 3 (1) ◽  
pp. 35-42
Author(s):  
Siong Fong Sim ◽  
Fazia Mohd Sinang ◽  
Diana Kertini ◽  
Felecia Collick ◽  
Mellisa Edwand Dankan ◽  
...  

This paper reports the chemical compositions and antimicrobial activity of essential oils extracted fromMyristica fragrans and Piper betle in individual and combined fractions. Enhanced antimicrobial activity isanticipated when the volatile oils are combined as compounds present in different extracts could complementeach other resulting in synergistic effect offering a broader spectrum of microbial resistance. The GC-MSanalysis indicates that chemical compositions of M. fragrans and P. betle vary with M. fragrans containingmore early-eluting compounds. The combined extract is characterised by compounds present in both extracts,some appear to co-elute in the mixture. The antimicrobial activity of the single and combined extracts againstStaphylococcus aureus, Escherichia coli and Aspergillus flavus were evaluated. P. betle demonstrates strongerantimicrobial activity than M. fragrans; the combined extract exhibit improved performance especially on A.flavus.


2015 ◽  
Vol 80 (12) ◽  
pp. 1461-1470 ◽  
Author(s):  
Laura Socea ◽  
Gabriel Saramet ◽  
Constantin Draghici ◽  
Bogdan Socea ◽  
Vlad Constantin ◽  
...  

A new series of hydrazinecarbothioamides 6-9 bearing 5H-dibenzo[a,d][7]annulene moiety were synthesized. Cyclization of 6-9 in NaOH solution produced the corresponding 1,2,4-triazoles-3(4H)-thiol 10-13, which proved to be axial isomers. The thioethers 14-17 were prepared by alkylation of 10-13 with methyl iodide. All new compounds were characterized by elemental analysis, IR-, UV-, 1H-NMR and 13C-NMR spectroscopy. The evaluation for antimicrobial activity against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Bacillus subtilis ATCC 6663, Salmonella tiphimurium ATCC 14028, Shigella flexneri ATCC 12022, Candida albicans ATCC 90028 was performed.


Sign in / Sign up

Export Citation Format

Share Document