Dysregulation of miRNAs as a signature for diagnosis and prognosis of gastric cancer and their involvement in the mechanism underlying gastric carcinogenesis and progression

IUBMB Life ◽  
2020 ◽  
Vol 72 (5) ◽  
pp. 884-898
Author(s):  
Alireza Ahadi
Pathobiology ◽  
2021 ◽  
Vol 88 (2) ◽  
pp. 156-169
Author(s):  
Williams Fernandes Barra ◽  
Dionison Pereira Sarquis ◽  
André Salim Khayat ◽  
Bruna Cláudia Meireles Khayat ◽  
Samia Demachki ◽  
...  

Identifying a microbiome pattern in gastric cancer (GC) is hugely debatable due to the variation resulting from the diversity of the studied populations, clinical scenarios, and metagenomic approach. <i>H. pylori</i> remains the main microorganism impacting gastric carcinogenesis and seems necessary for the initial steps of the process. Nevertheless, an additional non-<i>H. pylori</i> microbiome pattern is also described, mainly at the final steps of the carcinogenesis. Unfortunately, most of the presented results are not reproducible, and there are no consensual candidates to share the <i>H. pylori</i> protagonists. Limitations to reach a consistent interpretation of metagenomic data include contamination along every step of the process, which might cause relevant misinterpretations. In addition, the functional consequences of an altered microbiome might be addressed. Aiming to minimize methodological bias and limitations due to small sample size and the lack of standardization of bioinformatics assessment and interpretation, we carried out a comprehensive analysis of the publicly available metagenomic data from various conditions relevant to gastric carcinogenesis. Mainly, instead of just analyzing the results of each available publication, a new approach was launched, allowing the comprehensive analysis of the total sample amount, aiming to produce a reliable interpretation due to using a significant number of samples, from different origins, in a standard protocol. Among the main results, <i>Helicobacter</i> and <i>Prevotella</i> figured in the “top 6” genera of every group. <i>Helicobacter</i> was the first one in chronic gastritis (CG), gastric cancer (GC), and adjacent (ADJ) groups, while <i>Prevotella</i> was the leader among healthy control (HC) samples. Groups of bacteria are differently abundant in each clinical situation, and bacterial metabolic pathways also diverge along the carcinogenesis cascade. This information may support future microbiome interventions aiming to face the carcinogenesis process and/or reduce GC risk.


2020 ◽  
Author(s):  
Faisal Aziz ◽  
Mingxia Xin ◽  
Yunfeng Gao ◽  
Josh Monts ◽  
Kjersten Monson ◽  
...  

Abstract Background: Gastric cancer risk evolves over time due to environmental, dietary, and lifestyle changes including Helicobacter pylori (H. pylori) infection and consumption of hot peppers (i.e. capsaicin). H. pylori infection promotes gastric mucosal injury in the early phase of capsaicin exposure. In addition, capsaicin consumption is reported to suppress immune function and increase host susceptibility to microbial infection. This relationship suggests a need to investigate the mechanism of how both H. pylori infection and capsaicin contribute to gastric inflammation and lead to gastric cancer. No previous experimental animal models have been developed to study this dual association. Here we developed a series of mouse models that progress from chronic gastritis to gastric cancer. C57-Balb/c mice were infected with the H. pylori (SS1) strain and then fed capsaicin (0.05% or 0.2g/kg/day) or not. Consequently, we investigated the association between H. pylori infection and capsaicin consumption during the initiation of gastric inflammation and the later development of gastric cancer. Tumor size and phenotype were analyzed to determine the molecular mechanism driving the shift from gastritis to stomach cancer. Gastric carcinogenesis was also prevented in these models using the ornithine decarboxylase inhibitor DFMO (2-difluoromethylornithine). Results: This study provides evidence showing that a combination of H. pylori infection and capsaicin consumption leads to gastric carcinogenesis. The transition from chronic gastritis to gastric cancer is mediated through interleukin-6 (IL-6) stimulation with an incidence rate of 50%. However, this progression can be prevented by treating with anti-inflammatory agents. In particular, we used DFMO to prevent gastric tumorigenesis by reducing inflammation and promoting recovery of disease-free stasis. The anti-inflammatory role of DFMO highlights the injurious effect of inflammation in gastric cancer development and the need to reduce gastric inflammation for cancer prevention. Conclusions: Overall, these mouse models provide reliable systems for analyzing the molecular mechanisms and synergistic effects of H. pylori and capsaicin on human cancer etiology. Accordingly, preventive measures like reduced capsaicin consumption, H. pylori clearance, and DFMO treatment can lessen gastric cancer incidence. Lastly, anti-inflammatory agents like DFMO can play important roles in prevention of inflammation-associated gastric cancer.


2021 ◽  
Author(s):  
Zongxian Zhao ◽  
Shuliang Li ◽  
Shilong Li ◽  
Jun Wang ◽  
Hai Lin ◽  
...  

Abstract BackgroundGastric cancer (GC) is one of the most common and fatal cancers worldwide and effective biomarkers aids in GC management and prognosis. Hence, we explored the role and function of cadherin 6 (CDH6) in diagnosis and prognosis of gastric cancer. MethodsThe expression level of CDH6 in GC tissue and normal gastric tissue were analyzed using multiple public databases. Gene set enrichment analysis (GSEA) was performed using The Cancer Genome Atlas dataset (TCGA). The diagnostic efficiency of CDH6 expression in GC patients was determined through receiver operating characteristic (ROC) curve analysis. The associations between clinical variables and expression of CDH6 were evaluated statistically and the prognostic factors for overall survival were analyzed by univariate and multivariate Cox regression. Forty-four GC tissues, corresponding adjacent normal tissues (n=20), and detailed clinical information were collected from Tianjin Medical University General Hospital, CDH6 expression level was detected for further validation. ResultsCDH6 was upregulated in GC samples compared with normal gastric tissue, and GSEA identified the citrate cycle tricarboxylic (TCA) cycle, extracellular matrix (ECM) receptor interaction, glyoxylate and dicarboxylate metabolism oxidative phosphorylation, and pentose phosphate pathway as differentially enriched in GCs. According to the area under the ROC curve (AUC) (AUC=0.829 in TCGA and 0.966 in GSE54129), CDH6 had high diagnostic efficiency. Patients with high expression of CDH6 was associated with higher T classification and worse prognoses than those with low CDH6 expression in GC. Univariate and multivariate Cox regression analysis showed that CDH6 was an independent risk factor for overall survival (univariate: HR = 1.305, P = 0.002, multivariate: HR = 1.481, P < 0.001). ConclusionCDH6 was upregulated in GC and high CDH6 expression indicated higher T classification and worse prognoses. CDH6 could be a potentially independent molecular biomarker for diagnosis and prognosis of GC.


2020 ◽  
Vol 13 ◽  
pp. 175628481989543
Author(s):  
Amanda Braga Bona ◽  
Danielle Queiroz Calcagno ◽  
Helem Ferreira Ribeiro ◽  
José Augusto Pereira Carneiro Muniz ◽  
Giovanny Rebouças Pinto ◽  
...  

Background: Gastric cancer is one of the most incident types of cancer worldwide and presents high mortality rates and poor prognosis. MYC oncogene overexpression is a key event in gastric carcinogenesis and it is known that its protein positively regulates CDC25B expression which, in turn, plays an essential role in the cell division cycle progression. Menadione is a synthetic form of vitamin K that acts as a specific inhibitor of the CDC25 family of phosphatases. Methods: To better understand the menadione mechanism of action in gastric cancer, we evaluated its molecular and cellular effects in cell lines and in Sapajus apella, nonhuman primates from the new world which had gastric carcinogenesis induced by N-Methyl-N-nitrosourea. We tested CDC25B expression by western blot and RT-qPCR. In-vitro assays include proliferation, migration, invasion and flow cytometry to analyze cell cycle arrest. In in-vivo experiments, in addition to the expression analyses, we followed the preneoplastic lesions and the tumor progression by ultrasonography, endoscopy, biopsies, histopathology and immunohistochemistry. Results: Our tests demonstrated menadione reducing CDC25B expression in vivo and in vitro. It was able to reduce migration, invasion and proliferation rates, and induce cell cycle arrest in gastric cancer cell lines. Moreover, our in-vivo experiments demonstrated menadione inhibiting tumor development and progression. Conclusions: We suggest this compound may be an important ally of chemotherapeutics in the treatment of gastric cancer. In addition, CDC25B has proven to be an effective target for investigation and development of new therapeutic strategies for this malignancy.


2019 ◽  
Vol 12 ◽  
pp. 175628481989406 ◽  
Author(s):  
Christian Schulz ◽  
Kerstin Schütte ◽  
Julia Mayerle ◽  
Peter Malfertheiner

A link between chronic inflammation and carcinogenesis has been depicted in many organ systems. Helicobacter pylori is the most prevalent bacterial pathogen, induces chronic gastritis and is associated with more than 90% of cases of gastric cancer (GC). However, the introduction of nucleotide sequencing techniques and the development of biocomputional tools have surpassed traditional culturing techniques and opened a wide field for studying the mucosal and luminal composition of the bacterial gastric microbiota beyond H. pylori. In studies applying animal models, a potential role in gastric carcinogenesis for additional bacteria besides H. pylori has been demonstrated. At different steps of gastric carcinogenesis, changes in bacterial communities occur. Whether these microbial changes are a driver of malignant disease or a consequence of the histologic progression along the precancerous cascade, is not clear at present. It is hypothesized that atrophy, as a consequence of chronic gastric inflammation, alters the gastric niche for commensals that might further urge the development of H. pylori-induced GC. Here, we review the current state of knowledge on gastric bacteria other than H. pylori and on their synergism with H. pylori in gastric carcinogenesis.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Sergio Lario ◽  
María J. Ramírez-Lázaro ◽  
Aintzane González-Lahera ◽  
José L. Lavín ◽  
Maria Vila-Casadesús ◽  
...  

Abstract Helicobacter pylori infects 4.4 billion individuals worldwide and is considered the most important etiologic agent for peptic ulcers and gastric cancer. Individual response to H. pylori infection is complex and depends on complex interactions between host and environmental factors. The pathway towards gastric cancer is a sequence of events known as Correa’s model of gastric carcinogenesis, a stepwise inflammatory process from normal mucosa to chronic-active gastritis, atrophy, metaplasia and gastric adenocarcinoma. This study examines gastric clinical specimens representing different steps of the Correa pathway with the aim of identifying the expression profiles of coding- and non-coding RNAs that may have a role in Correa’s model of gastric carcinogenesis. We screened for differentially expressed genes in gastric biopsies by employing RNAseq, microarrays and qRT-PCR. Here we provide a detailed description of the experiments, methods and results generated. The datasets may help other scientists and clinicians to find new clues to the pathogenesis of H. pylori and the mechanisms of progression of the infection to more severe gastric diseases. Data is available via ArrayExpress.


2015 ◽  
Vol 9 ◽  
pp. BBI.S24066 ◽  
Author(s):  
Monica B. Assumpção ◽  
Fabiano C. Moreira ◽  
Igor G. Hamoy ◽  
Leandro Magalhães ◽  
Amanda Vidal ◽  
...  

Field effect in cancer, also called “field cancerization”, attempts to explain the development of multiple primary tumors and locally recurrent cancer. The concept of field effect in cancer has been reinforced, since molecular alterations were found in tumor-adjacent tissues with normal histopathological appearances. With the aim of investigating field effects in gastric cancer (GC), we conducted a high-throughput sequencing of the miRnome of four GC samples and their respective tumor-adjacent tissues and compared them with the miRnome of a gastric antrum sample from patients without GC, assuming that tumor-adjacent tissues could not be considered as normal tissues. The global number of miRNAs and read counts was highest in tumor samples, followed by tumor-adjacent and normal samples. Analyzing the miRNA expression profile of tumor-adjacent miRNA, hsa-miR-3131, hsa-miR-664, hsa-miR-483, and hsa-miR-150 were significantly downregulated compared with the antrum without tumor tissue ( P-value < 0.01; fold-change < 5). Additionally, hsa-miR-3131, hsa-miR-664, and hsa-miR-150 were downregulated ( P-value < 0.001) in all paired samples of tumor and tumor-adjacent tissues, compared with antrum without tumor mucosa. The field effect was clearly demonstrated in gastric carcinogenesis by an epigenetics-based approach, and potential biomarkers of the GC field effect were identified. The elevated expression of miRNAs in adjacent tissues and tumors tissues may indicate that a cascade of events takes place during gastric carcinogenesis, reinforcing the notion of field effects. This phenomenon seems to be linked to DNA methylation patterns in cancer and suggests the involvement of an epigenetic network mechanism.


Sign in / Sign up

Export Citation Format

Share Document