Microinjection Molding of Polymers for Biomimickry of Organ Tissue

2012 ◽  
Vol 68 (10) ◽  
pp. 8-12 ◽  
Author(s):  
John W. Rodgers ◽  
Burak Bekisli ◽  
John P. Coulter
Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1126
Author(s):  
Tijana Kosanovic ◽  
Dragan Sagic ◽  
Vladimir Djukic ◽  
Marija Pljesa-Ercegovac ◽  
Ana Savic-Radojevic ◽  
...  

Although the original data on systemic oxidative stress in COVID-19 patients have recently started to emerge, we are still far from a complete profile of changes in patients’ redox homeostasis. We aimed to assess the extent of oxidative damage of proteins, lipids and DNA during the course of acute disease, as well as their association with CT pulmonary patterns. In order to obtain more insight into the origin of the systemic oxidative stress, the observed parameters were correlated with inflammatory biomarkers and biomarkers of multiorgan impairment. In this prospective study, we included 58 patients admitted between July and October 2020 with COVID-19 pneumonia. Significant changes in malondialdehyde, 8-hydroxy-2’-deoxyguanosine and advanced oxidation protein products levels exist during the course of COVID-19. Special emphasis should be placed on the fact that the pattern of changes differs between non-hospitalized and hospitalized individuals. Our results point to the time-dependent relation of oxidative stress parameters with inflammatory and multiorgan impairment biomarkers, as well as pulmonary patterns in COVID-19 pneumonia patients. Correlation between redox biomarkers and immunological or multiorgan impairment biomarkers, as well as pulmonary CT pattern, confirms the suggested involvement of neutrophils networks, IL-6 production, along with different organ/tissue involvement in systemic oxidative stress in COVID-19.


2021 ◽  
pp. 096739112098650
Author(s):  
Dah Hee Kim ◽  
Young Seok Song

The purpose of this study is to integrate a polymeric film onto a mold to impede thermal heat transfer during resin infusion. A thin plastic plate was fabricated by using microinjection molding. A polyimide (PI) film was laminated onto a mold in an effort to produce a thin light guide plate (LGP). The film could decelerate the solidification of molten polymer in the cavity of mold and enhance the wall slip of resin on the mold. The insulation effect was modeled numerically. The surface roughness and pattern transfer characteristics of the LGP were evaluated. It was found that the fluidity of the resin increased due to the decreased skin layer during mold filling. The results showed that the strategy proposed in this study could help decrease the thickness of LGP effectively when manufacturing the part via injection molding.


2021 ◽  
Vol 36 (3) ◽  
pp. 276-286
Author(s):  
Z. Dekel ◽  
S. Kenig

Abstract The mechanical, electrical, thermal, and rheological properties of micro injection molded nanocomposites comprising 2% and 5% carbon nanotubes (CNTs) incorporated in polycarbonate (PC), and polyamide 66 (PA) were studied. The design of experiments method was used to investigate the composition-process – properties relationship. Results indicated that the process variables significantly affected the flow patterns and resulting morphology during the filling stage of the microinjection molding (lIM) process, using 0.45 mm diameter lIM samples. Two distinct flow regimes have been identified in lIM using the low cross-section samples. The first was a conventional “fountain flow,” which resulted in a skin/core structure and reduced volume resistivity up to 10 X cm in the case of 5% CNTs and up to 100 X cm in 2% CNTs, in both polymers, respectively. In addition, inferior mechanical properties were obtained, attributed to polymer degradation under high shear rate conditions, when practicing high injection speeds, high mold temperatures, and high screw rotation velocities. The second was a “plug flow” due to wall slippage, obtained under low injection speeds, low mold temperatures, and low rotation velocities, leading to a substantial increase in modulus of elasticity (60%) with increased electrical resistivity up to 103 X cm for 5% CNTs and 105 X cm for 2% CNTs, respectively. The rheological percolation threshold was obtained at 2% CNTs while the electrical threshold was attained at 0.4% CNTs, in both polymers. It was concluded that in lIM, the process conditions should be closely monitored. In the case of high viscous heating, degradation of mechanical properties was obtained, while skin- core morphology formation enhanced electrical conductivity.


2015 ◽  
Vol 2 (1) ◽  
pp. 19-29 ◽  
Author(s):  
XiangGuo Lv ◽  
JingXuan Yang ◽  
Chao Feng ◽  
Zhe Li ◽  
ShiYan Chen ◽  
...  

2021 ◽  
Author(s):  
P.L.E. Oliveira ◽  
C.R. Starling ◽  
C.L.P. Maurício ◽  
F.R. Guedes ◽  
M.A. Visconti ◽  
...  

Introduction: The objective of this study was to compare the mean absorbed dose in patients undergoing head and neck examinations using two cone beam computed tomography (CBCT, Kodak and i-CAT) and one multi-detector computed tomography (MDCT). Methods: Three thermoluminescent dosimeters (TLDs), calibrated in air kerma, were positioned in 24 regions of the head and neck of a phantom simulating an average adult. The mean absorbed dose (mGy) values in these positions, for different organs and tissues, were obtained using correction factors, considering the ratio between the mass energy absorption coefficients of organ/tissue and air. Comparison between radiation doses in the most radiosensitive regions was done by calculating the ratio of these dose values, with propagated uncertainty. Results: The dose in all regions was significantly higher for MDCT when compared to CBCT. Concerning CBCT equipment, the Kodak device had a higher absorbed dose than the i-CAT for most of the regions tested. The uncertainty of the i-CAT was greater than that of the Kodak. Conclusion: Due to the considerable difference between absorbed doses, emphasizing the higher dose values obtained in MDCT, the dissemination of CBCT application in medicine is recommended, as well as further studies to broaden the criteria for use.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Junyi Wu ◽  
Yanmei Hu ◽  
Yin Zhu ◽  
Ping Yin ◽  
Gerhard Litscher ◽  
...  

As a further step towards the modernization of acupuncture, the objective of this review was to figure out the frequency and severity of adverse complications and events in acupuncture treatment reported from 1980 to 2013 in China. All first-hand case reports of acupuncture-related complications and adverse events that could be identified in the scientific literature were reviewed and classified according to the type of complication and adverse event, circumstance of the event, and long-term patient outcome. The selected case reports were published between 1980 and 2013 in 3 databases. Relevant papers were collected and analyzed by 2 reviewers. Over the 33 years, 182 incidents were identified in 133 relevant papers. Internal organ, tissue, or nerve injury is the main complications of acupuncture especially for pneumothorax and central nervous system injury. Adverse effects also included syncope, infections, hemorrhage, allergy, burn, aphonia, hysteria, cough, thirst, fever, somnolence, and broken needles. Qualifying training of acupuncturists should be systemized and the clinical acupuncture operations should be standardized in order to effectively prevent the occurrence of acupuncture accidents, enhance the influence of acupuncture, and further popularize acupuncture to the rest of the world.


Author(s):  
Niranjan Bhattacharya ◽  
Phillip Stubblefield

Sign in / Sign up

Export Citation Format

Share Document