In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses

2002 ◽  
Vol 61 (2) ◽  
pp. 301-311 ◽  
Author(s):  
P. Sepulveda ◽  
J. R. Jones ◽  
L. L. Hench
2021 ◽  
Vol 11 (12) ◽  
pp. 2313-2320
Author(s):  
Jian Zhao ◽  
Wei Li ◽  
Xin Dong ◽  
Jiying Chen

Based on bioactive glasses (BG) of 58S, sol–gel method is used to prepare strontium oxide substituted bioactive glasses (SrO-BG) with different strontium content. SrO-BG and nano hydroxyapatite (HAp) composite materials were synthesized using precipitation method. The phase composition and morphologies of the prepared materials were examined by x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The dissolution and bio-mineralization of SrO-BG and SrO-BG/HAp composites in SBF are investigated by immersion method. The effects of secretion components of macrophages regulated by strontium doped SrO-BG/HAp composites on the osteogenic differentiation (OD) of bone marrow mesenchymal stem cells (BMSCs) are analyzed. The results demonstrate that the SrO-BG can inhibit the dissolution of BG. Different proportions of SrO-BG/HAp composites show good ability to induce HAp in SBF. The bio-mineralization ability of SrO-BG/HAp composites increases with the increase of SrO-BG content. The results of dissolution behavior and bio-mineralization of SrO-BG/HAp composite show that the dissolution rate of each ion can be controlled by adjusting the content of SrO-BG in the composite, and then the degradation rate can effectively be controlled. The results of in vitro experiments show that SrO-BG/HAp composites with 2%, 5% and 8% strontium content are more effective in promoting M2 polarization of macrophages than SrO-BG/HAp composites with 0% strontium content. Among them, 5% strontium doped SrO-BG/HAp has the strongest effect on M2 polarization of macrophages, and the secretion of macrophages regulated by 5% strontium doped SrO-BG/HAp composite is more conducive to bone repair.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2711
Author(s):  
Ana S. Neto ◽  
Daniela Brazete ◽  
José M.F. Ferreira

The combination of calcium phosphates with bioactive glasses (BG) has received an increased interest in the field of bone tissue engineering. In the present work, biphasic calcium phosphates (BCP) obtained by hydrothermal transformation of cuttlefish bone (CB) were coated with a Sr-, Mg- and Zn-doped sol-gel derived BG. The scaffolds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. The initial CB structure was maintained after hydrothermal transformation (HT) and the scaffold functionalization did not jeopardize the internal structure. The results of the in-vitro bioactivity after immersing the BG coated scaffolds in simulated body fluid (SBF) for 15 days showed the formation of apatite on the surface of the scaffolds. Overall, the functionalized CB derived BCP scaffolds revealed promising properties, but further assessment of the in-vitro biological properties is needed before being considered for their use in bone tissue engineering applications.


2017 ◽  
Vol 12 (1) ◽  
pp. 015029 ◽  
Author(s):  
Mayyada M H El-Sayed ◽  
Amany A Mostafa ◽  
Alaa M Gaafar ◽  
Walid El Hotaby ◽  
Esmat MA Hamzawy ◽  
...  

2005 ◽  
Vol 480-481 ◽  
pp. 21-26 ◽  
Author(s):  
L.J. Skipper ◽  
F.E. Sowrey ◽  
D.M. Pickup ◽  
R.J. Newport ◽  
K.O. Drake ◽  
...  

The formation of a carbonate-containing hydroxyapatite, HCAp, layer on bioactive calcium silicate sol-gel glass of the formula (CaO)0.3(SiO2)0.7 has been studied in-vitro in Simulated Body Fluid (SBF). Extended X-ray Absorption Fine Structure (EXAFS), X-ray Absorption Near Edge Structure (XANES), X-ray diffraction (XRD), and solid state nuclear magnetic resonance (NMR) measurements have been performed with results showing the formation of a significantly amorphous HCAp layer after less than 5 hours in solution.


2011 ◽  
Vol 493-494 ◽  
pp. 85-89 ◽  
Author(s):  
Viorica Simon ◽  
R. Ciceo Lucacel ◽  
I. Titorencu ◽  
V. Jinga

Lime phosphosilicate and soda lime phosphosilicate glasses prepared by sol-gel method were precursors of bioactive glass-ceramics. The structure of the samples and the distribution of the [SiO4] units was investigated by X-ray diffraction and infrared spectroscopy. Human osteosarcoma cell line (MG63) was used for the in vitro cellular response. DNA staining (Hoechst 33258) assay was performed for assessing samples colonization.


Author(s):  
Bui Xuan Vuong

In this paper, three ceramic compositions 50SiO2-50CaO (A), 45SiO2-45CaO-10P2O5 (B) and 40SiO2-40CaO-20P2O5 (C) (wt %) were synthesized by using the sol-gel technique. XRD analysis demonstrates that only sample C can form the glass material. Treated temperatures and heated times were also evaluated. Analysis data showed that the bioglass 40SiO2-40CaO-20P2O5 (wt %) can successfully elaborate when the ceramic powder heated at 750 oC for 3 hours. ‘‘In vitro’’ experiment was effectuated to investigate the bioactivity of bioglass 40SiO2-40CaO-20P2O5 by soaking powder samples in SBF solution. Obtained result confirmed the formation of hydroxyapatite (HA) phase on glass’s surface after 15 days of immersion, in which HA formation orients following (211) and (222) miller planes in crystalline structure of HA phase. Keywords Sol-gel; bioglass; hydroxyapatite; SBF; bioactivity References [1] D.F. Williams, Definitions in Biomaterials, Consensus Conference for the European Society for Biomaterials, Chester, UK, 1986.[2] L.L. Hench, Bioceramics: From Concept to Clinic, Journal of the American Ceramic Society, 74 (1991) 1487.[3] L.L. Hench, The story of Bioglass, Journal of Materials Science: Materials in Medicine, 17 (2006) 967.[4] X.V. Bui, H. Oudadesse, Y. Le Gal, A. Mostafa, P.Pellen and G. Cathelineau, Chemical Reactivity of Biocomposite Glass-Zoledronate, Journal of the Australian Ceramic Society, 46 (2010) 24.[5] L.L. Hench, Genetic design of bioactive glass, Journal of the European Ceramic Society, 29 (2009) 1257.[6] S. Kumar, P. Vinatier, A. Levasseur, K.J. Rao, Investigations of structure and transport in lithium and silver borophosphate glasses, Journal of Solid State Chemistry, 177 (2004)1723.[7] Z. Hong, A. Liu, L. Chen, X. Chen, X. Jing, Preparation of bioactive glass ceramic nanoparticles by combination of sol–gel and coprecipitation method, Journal of Non-Crystalline Solids, 355 (2009) 368.[8] D.B. Joroch, D.C. Clupper, Modulation of zinc release from bioactive sol–gel derived SiO2‐CaO‐ZnO glasses and ceramics, Journal of Biomedical Materials Research Part A, 82A (2007) 575.[9] J. Roman, S. Padilla, M. Vallet-Regi, Sol−Gel Glasses as Precursors of Bioactive Glass Ceramics, Chemistry of Materials, 15 (2003) 798.[10] J. Lao, J.M. Nedelec, Ph. Moretto, E. Jallot, Biological activity of a SiO2-CaO-P2O5 sol-gel glass highlighted by PIXE-RBS methods, Nuclear Instruments and Methods in Physics Research Section B, 245 (2006) 511.[11] [11] M. Vallet-Regi, L. Ruiz-Gonzalez, I. Izquierdo, J.M. Gonzalez-Calbet, Revisiting silica based ordered mesoporous materials: medical applications, Journal of Materials Chemistry, 16 (2006) 26.[12] W. Xia, J. Chang, Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-mediated sol–gel method, Materials Letters 61 (2007) 3251.[13] R. Li, A.E. Clark, L.L. Hench, An investigation of Bioactive Glass Powders by Sol-Gel Processing, Transactions of 16th Annual Meeting of the Societey for Biomaterials, 12 (1990) 40.[14] J. Lao, J.M. Nedelec, P. Moretto, E. Jallot, Imaging physicochemical reactions occurring at the pore surface in binary bioactive glass foams by micro ion beam analysis, Applied Materials and Interfaces, 6 (2010) 1737.[15] A. Balamurugan, G. Balossier, S. Kannan, J. Michel, A.H.S. Rebelo, J.M.F. Ferreira, Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglas, Acta Biomaterialia, 3 (2007) 255.[16] Z. Hong, A. Liu, L. Chen, X. Chen, X. Jing, Bioactive glass prepared by sol–gel emulsion, Journal of Non-Crystalline Solids, 355 (2009) 368.[17] O. Peital, E.D. Zanotto, L.L. Hench, Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics, Journal of Non-Crystalline Solids, 292 (2001) 115.[18] J. Liu, X. Miao, Sol-gel derived bioglass as a coating material for porous alumina scaffolds, Ceramics International, 30 (2004) 1781.[19] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27 (2006) 2907.[20] M. Dziadek, B. Zagrajczuk, P. Jelen, Z. Olejniczak, K.C. Kowalska, Structural variations of bioactive glasses obtained by different synthesis routes, Ceramics International, 42 (2016) 14700.[21] R. Lakshmi, V. Velmurugan and S. Sasikumar, Preparation and Phase Evolution of Wollastonite by Sol-Gel Combustion Method Using Sucrose as the Fuel, Combustion Science and Technology, 185 (2013) 1777.[22] G. Voicu, A. Bădănoiu, E. Andronescu1, C. M. Chifiruc, Synthesis, characterization and bioevaluation of partially stabilized cements for medical applications, Central European Journal of Chemistry, 11 (2013) 1657.[23] M.V. Regi, Ceramics for medical applications, Journal of the Chemical Society, Dalton Transactions, 2 (2001) 97.[24] G. Voicu, A.I. Bădănoiu, E. Andronescu, C.M. Chifiruc, Synthesis, characterization and bioevaluation of partially stabilized cements for medical applications, Central European Journal of Chemistry, 11 (2013) 1657.M. Wu, T. Wang, Y. Wang, F. Li, M. Zhou, X. Wu, A novel and facile route for synthesis of fine tricalcium silicate powders, Materials letters, 227 (2018), 187.


2012 ◽  
Vol 22 (27) ◽  
pp. 13698 ◽  
Author(s):  
Shruti Shruti ◽  
Antonio J. Salinas ◽  
Gianluca Malavasi ◽  
Gigliola Lusvardi ◽  
Ledi Menabue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document