scholarly journals Mettl3 promotes oxLDL‐mediated inflammation through activating STAT1 signaling

Author(s):  
Zhenwei Li ◽  
Qingqing Xu ◽  
Ning Huangfu ◽  
Xiaomin Chen ◽  
Jianhua Zhu
Keyword(s):  
2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii198-ii198
Author(s):  
Sabbi Khan Khan ◽  
Emmanuel Martinez-Ledesma ◽  
Sandeep Mittal ◽  
Kaitlin Gandy ◽  
Kristin Alfaro-Munoz ◽  
...  

Abstract Glioblastoma (GBM) is the most common, highly aggressive, and lethal primary brain tumor in adults. Interferon (IFN)-mediated signal transducer and activator of transcription 1 (STAT1) signaling contributes to various aspects of stemness, cell death, cytokine signaling in immune and non-immune cells. However, the role of IFN/STAT1 signaling in stemness, cell death and treatment resistance in GBM is unclear. This study aimed to investigate the cancer cell-intrinsic IFN/STAT1 signaling and its role in cell proliferation, stemness, and apoptosis. By using the metagene scores for type I and type II IFN-responsive genes, we evaluated basal IFN/STAT1 signaling in The Cancer Genome Atlas (TCGA) and in patient-derived cohorts of stem-like cells (GSCs) RNA expression datasets. In-silico analyses were further validated for the constitutive IFN signaling in a subset of GSCs using qPCR, WB and ELISA assays. We employed pharmacological activators and/or inhibitors of IFN/STAT1 signaling in GSCs to study its role in stemness and cell death. We found differential cell-intrinsic type I and type II IFN-signaling markers in GSCs and GBM tumors. High IFN-signaling is associated with mesenchymal phenotype and poor survival outcomes. Acute and chronic GSC exposure to recombinant IFNs reversibly activated both type I and II IFN-signaling in GSCs. IFN-β exposure induced apoptosis in intrinsically high IFN/STAT1-signaling GSCs, but not in the low IFN/STAT1-signaling GSCs. In summary, our findings demonstrate that GBM exhibit differential cell-intrinsic IFN-signaling, and basal IFN/STAT1 is a key factor for IFN-β-mediated cell death in GSCs. However, further mechanistic investigation of intrinsic IFN signaling in GBM, particularly in the stem cell compartment is needed.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Yi-Hao Chen ◽  
Ching-Long Chen ◽  
Chang-Min Liang ◽  
Jy-Been Liang ◽  
Ming-Cheng Tai ◽  
...  

To evaluate the effects of silibinin on intercellular adhesion molecule-1 (ICAM-1) expression, we used ARPE-19 cells as a model in which tumor necrosis factor (TNF-α) and interferon (IFN-γ) enhanced ICAM-1 expression. This upregulation was inhibited by silibinin. In an adherence assay using ARPE-19 and THP-1 cells, silibinin inhibited the cell adhesion function of ICAM-1. The inhibitory effects of silibinin on ICAM-1 expression were mediated via the blockage of nuclear translocation of p65 proteins in TNF-αand phosphorylation of STAT1 in IFN-γ-stimulated cells. In addition, silibinin altered the degree of N-linked glycosylation posttranslationally in ARPE-19 cells by significantly enhancingMGAT3gene expression. Silibinin can increase the O-GlcNAc levels of glycoproteins in ARPE-19 cells. In a reporter gene assay, PUGNAc, which can also increase O-GlcNAc levels, inhibited NF-κB reporter activity in TNF-α-induced ARPE-19 cells and this process was augmented by silibinin treatment. Overexpression ofOGTgene was associated with reduced TNF-α-induced ICAM-1 levels, which is consistent with that induced by silibinin treatment. Taken together, silibinin inhibits ICAM-1 expression and its function through altered O-linked glycosylation in NF-κB and STAT1 signaling pathways and decreases the N-linked glycosylation of ICAM-1 transmembrane protein in proinflammatory cytokine-stimulated ARPE-19 cells.


2021 ◽  
Author(s):  
Dan Qiu ◽  
Xianxin Yan ◽  
Xinqin Xiao ◽  
Guijuan Zhang ◽  
Yanqiu Wang ◽  
...  

Abstract Background: The precancerous disease of breast cancer is an inevitable stage in the emergence and development of breast neoplasms. Breast cancer (BC) is a common malignant tumor in female worldwide. A large number of literatures have proved that, as antitumor drugs, flavonoid compounds can promote proliferation and immune regulation of T cell. Many researchers believe that Quercetin (Que) has great potential in the field of anti-breast cancer. Besides that, γδ T cells are a class of non-traditional T cells, which have long attracted attention due to their potential in immunotherapy. Above all, JAK/STAT1 signaling pathway is closely related to the immunity.MethodsIn the experiment designed in this paper, we first used Que, one of the flavonoids, to screen the target gene. Then, MCF-10A, MCF-10AT, MCF-7 and MDA-MB231 BC cells were co-cultured with Que for 24h and 48h, apoptosis was found in some the cells. We then cultured Que with γδ T cells and found that Que can promote the proliferation of Vδ2 T cell subsets of γδ T cells, thus enhancing the killing effect of γδ T cells. Western blot was use to showed the change of JAK/STAT1 signaling pathway related proteins after the Que was co-cultured with MCF-10AT and MCF-7 for 48h.ResultsNetwork pharmacology has shown that Que related pathways include the JAK/STAT1 signaling pathway and are associated with precancerous breast cancers. Que induced apoptosis of MCF-10AT, MCF-7 and MDA-MB-231 in a time and concentration-dependent manner. Most importantly, Que can promote the differentiation of γδ T cells into the Vδ2 T cell subpopulation, this means that Que and γδ T cells may play a synergistic role in killing tumor cells and cellular immune regulation. In addition, our results showed that Que can increase in protein levels of IFNγ-R, p-JAK2 and p-STAT1, while the concomitant decrease protein levels of PD-L1.ConclusionsIn conclusion, Que plays a synergistic role in killing BC cells and promoting apoptosis by regulating the expression of IFNγ-R, p-JAK2, p-STAT1, and PD-L1 in the JAK/STAT1 signaling pathway and promoting the regulation of γδ T cells. Que may be a potential drug for the prevention of precancerous breast cancer and adjuvant treatment of BC.


PLoS ONE ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. e0193429 ◽  
Author(s):  
Paige M. Kulling ◽  
Kristine C. Olson ◽  
Cait E. Hamele ◽  
Mariella F. Toro ◽  
Su-Fern Tan ◽  
...  

2020 ◽  
Author(s):  
Saisai Wang ◽  
Yiting Ling ◽  
Yuanyuan Yao ◽  
Gang Zheng ◽  
Wenbin Chen

Abstract Background: Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infection in infants, children, immunocompromised adults, and elderly individuals. Currently, there are few therapeutic options available to prevent RSV infection. The present study aimed to investigate the effects of luteolin on RSV replication and the related mechanisms. Material and methods: We pretreated cells and mice with luteolin before infection with RSV, the virus titer, expressions of RSV-F, interferon (IFN)-stimulated genes (ISGs), and production of IFN-α and IFN-β were determined by plaque assay, RT-qPCR, and ELISA, respectively. The activation of Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1) signaling pathway was detected by Western blotting and luciferase assay. Proteins which negatively regulates STAT1 was determined by Western blotting. Then cells were transfected with suppressor of cytokine signaling 1 (SOCS1) plasmid and virus replication and ISGs expression was determined. Luciferase reporter assay and Western blotting was performed to detect the relationship between SOCS1 and miR-155. Results: Luteolin inhibited RSV replication, as shown by the decreased viral titer and RSV-F mRNA expression both in vitro and in vivo. The antiviral activity of luteolin was attributed to the enhanced phosphorylation of STAT1, resulting in the increased production of ISGs. Further study showed that SOCS1 was downregulated by luteolin and SOCS1 is a direct target of microRNA-155 (miR-155). Inhibition of miR-155 rescued luteolin-mediated SOCS1 downregulation, whereas upregulation of miR-155 enhanced the inhibitory effect of luteolin. Conclusion: Luteolin inhibits RSV replication by regulating the miR-155/SOCS1/STAT1 signaling pathway.


2021 ◽  
Author(s):  
Jianyuan Li ◽  
Hui Shi ◽  
Xiaoyu Liu ◽  
Yanwei Wang ◽  
Haiyan Wang ◽  
...  

Abstract I. Background: Peroxiredoxin 6 (Prdx6) is widely expressed in mammalian tissues. Our previous study demonstrated that Prdx6 was expressed in human epididymis and spermatozoa, and the protective role of Prdx6 in human spermatozoa was also reported. In this study, we demonstrate the potential role and mechanism of Prdx6 in human epididymis epithelial cells (HEECs).II. Methods and Results: Western blotting was used to measure expression levels of key proteins in the JAK / STAT signaling pathway. Digital gene expression analysis (DGE) was used to identify gene expression patterns in control HECs and in HECs after Prdx6-RNA interference (P6-RNAi). The DGE analysis identified 589 up-regulated and 314 down-regulated genes (including Prdx6) in Prdx6-RNAi (P6-RNAi) HEECs. Thirteen significantly different pathways were identified between the two groups, with the majority different expressed genes belonging to the CCL, CXCL, IL, and IFIT families. In particular, the expression levels of IL6, IL6ST, and eighteen IFN related genes were significantly increased in the condition of the down-regulated expression of Prdx6. Compared to control HEECs, the expression levels of JAK1, STAT1, phosphorylated JAK1 and STAT1 were significantly increased, while the expression levels of SOCS3 was significantly decreased in P6-RNAi HEECs. The Malondialdehyde (MDA) level and total antioxidant capacity in P6-RNAi HEECs were significantly increased and decreased compared to that of control, respectively. III. Conclusions: We speculated that knockdown of Prdx6 resulted in higher levels of ROS in HEECs, which in turn, activated the JAK1 / STAT1 signaling pathway induced by IL-6 receptor and IFN.


2016 ◽  
Vol 12 (7) ◽  
pp. e1005748 ◽  
Author(s):  
Thomas Harwardt ◽  
Simone Lukas ◽  
Marion Zenger ◽  
Tobias Reitberger ◽  
Daniela Danzer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document