Brg1, the ATPase subunit of the SWI/SNF chromatin remodeling complex, is required for myeloid differentiation to granulocytes

2005 ◽  
Vol 206 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Diana Vradii ◽  
Stefan Wagner ◽  
Diem N. Doan ◽  
Jeffrey A. Nickerson ◽  
Martin Montecino ◽  
...  
Development ◽  
1999 ◽  
Vol 126 (4) ◽  
pp. 733-742 ◽  
Author(s):  
M. Vazquez ◽  
L. Moore ◽  
J.A. Kennison

The trithorax group gene brahma (brm) encodes the ATPase subunit of a chromatin-remodeling complex involved in homeotic gene regulation. We report here that brm interacts with another trithorax group gene, osa, to regulate the expression of the Antennapedia P2 promoter. Regulation of Antennapedia by BRM and OSA proteins requires sequences 5′ to the P2 promoter. Loss of maternal osa function causes severe segmentation defects, indicating that the function of osa is not limited to homeotic gene regulation. The OSA protein contains an ARID domain, a DNA-binding domain also present in the yeast SWI1 and Drosophila DRI proteins. We propose that the OSA protein may target the BRM complex to Antennapedia and other regulated genes.


2019 ◽  
Author(s):  
Julio C. Sanchez ◽  
Liyang Zhang ◽  
Stefania Evoli ◽  
Nicholas J. Schnicker ◽  
Maria Nunez-Hernandez ◽  
...  

AbstractThe ATP-dependent BAF chromatin remodeling complex plays a critical role in gene regulation by modulating chromatin architecture, and is frequently mutated in cancer. Indeed, subunits of the BAF complex are found to be mutated in >20% of human tumors. The mechanism by which BAF properly navigates chromatin is not fully understood, but is thought to involve a multivalent network of histone and DNA contacts. We previously identified a composite domain in the BRG1 ATPase subunit that is capable of associating with both histones and DNA in a multivalent manner. Mapping the DNA binding pocket revealed that it contains several cancer mutations. Here, we utilize SELEX-seq to identify the DNA specificity of this composite domain and NMR spectroscopy and molecular modelling to determine the structural basis of DNA binding. Finally, we demonstrate that cancer mutations in this domain alter the mode of DNA association.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 637-637
Author(s):  
Daichi Inoue ◽  
Chew Guo-Liang ◽  
Bo Liu ◽  
Stanley C Lee ◽  
Brittany C Michel ◽  
...  

Mutations in the RNA splicing factor SF3B1 are common in MDS and other myeloid malignancies. SF3B1 mutations promote expression of mRNAs that use an aberrant, intron proximal 3' splice site (ss). Despite the consistency of this finding, linking aberrant splicing changes to disease pathogenesis has been a challenge. Here we identify aberrant splicing and downregulated expression of BRD9, a member of the recently described ATP-dependent non-canonical BAF (ncBAF) chromatin remodeling complex, across SF3B1 mutant leukemias. In so doing, we identify a novel role for altered ncBAF function in hematopoiesis and MDS. To systematically identify functionally important aberrant splicing events created by mutant SF3B1, we integrated differential splicing events in SF3B1 mutant versus wild-type MDS with a positive enrichment CRISPR screen mimicking splicing changes induced by mutant SF3B1 that promote NMD (non-sense mediated mRNA decay). We tested whether loss of any gene functionally inactivated by SF3B1 mutations promoted transformation of Ba/F3 and 32D cells. This identified a specific NMD-inducing aberrant splicing event in BRD9 which promoted cytokine independence (Fig. A) and exhibited striking aberrant splicing across CLL and MDS and across all mutational hotspots in SF3B1 (Fig. B). SF3B1 mutations cause exonization of a normally intronic sequence in BRD9, resulting in inclusion of a poison exon that interrupts BRD9's reading frame (Fig. C) and reduced BRD9 mRNA and protein expression through NMD (Fig. D). We confirmed that mutant SF3B1 suppressed full-length BRD9 levels without generating truncated BRD9 protein. Loss of BRD9 impaired ncBAF complex formation as indicated by abolished interaction between the ncBAF specific component GLTSCR1 and the ATPase subunit BRG1 upon chemical or spliceosomal BRD9 ablation (Fig. D). Given that prior work has linked mutant SF3B1 to use of aberrant 3' ss, we sought to understand the molecular basis for aberrant exon inclusion in BRD9 by mutant SF3B1. Lariat sequencing of SF3B1 mutant versus WT K562 cells and BRD9 minigene analyses identified use of a deep intronic branchpoint adenosine by mutant SF3B1 to promote BRD9 poison exon inclusion (Fig. E). The data above suggest a role for BRD9 downregulation in SF3B1 mutant leukemia. While prior work indicated that BRD9 is required in MLL-rearranged AML (Hohmman et al. Nature Chemical Biology 2016), the role of BRD9 in normal hematopoiesis or other subtypes of myeloid neoplasms has not been evaluated. Genetic downregulation of BRD9 in normal human hematopoietic progenitors from cord blood promoted myelopoiesis while impairing megakaryopoiesis. Interestingly and unexpectedly, BRD9 loss in CD34+ cells promoted terminal erythroid differentiation in vitro. To further evaluate BRD9's role in hematopoiesis in vivo, we also generated mice with inducible knockout of the bromodomain of BRD9 (required for BRD9 function) and generation of a frameshift transcript resulting in reduced Brd9 expression (Fig. F). Loss of Brd9 resulted in macrocytosis with bone marrow erythroid dysplasia in a dosage-dependent manner, along with impaired lymphopoiesis and myeloid skewing. Moreover, competitive transplantation of hematopoietic precursors from these mice revealed that ablation of Brd9 function impaired lymphoid reconstitution while promoting advantage of myeloid cells and hematopoietic precursors (Fig. G-I). In myeloid leukemia cells, introduction of SF3B1K700E or downregulation of BRD9 resulted in increased chromatin accessibility at promoters with a significant overlap in commonly upregulated genes. This finding suggests shared epigenetic effects of SF3B1K700E mutations and BRD9 loss (Fig. J). These data identify aberrant splicing of BRD9 across the spectrum of SF3B1 mutant cancers and identify a novel role for downregulation of ncBAF function in MDS pathogenesis. Consistent with human genetic data, genetic ablation of BRD9 function in mouse and human hematopoietic cells resulted in myeloid skewing and dyserythropoiesis. These data suggest that targeted correction of aberrant BRD9 splicing might serve as a novel therapeutic approach for SF3B1-mutant leukemias. Of note, treatment with drugs impairing the binding of mutant SF3B1 to RNA resulted in a dose-dependent rescue of aberrant BRD9 splicing in vitro (Fig. K) and in treatment of an SF3B1 mutant AML patient-derived xenograft in vivo. Figure Disclosures Kadoch: Foghorn Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Min Liu ◽  
Tongyu Sun ◽  
Ni Li ◽  
Junjie Peng ◽  
Da Fu ◽  
...  

Abstract Autophagy is a central component of integrated stress responses that influences many inflammatory diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC). While the core machinery is known, the molecular basis of the epigenetic regulation of autophagy and its role in colon inflammation remain largely undefined. Here, we report that BRG1, an ATPase subunit of the SWI/SNF chromatin remodeling complex, is required for the homeostatic maintenance of intestinal epithelial cells (IECs) to prevent the inflammation and tumorigenesis. BRG1 emerges as a key regulator that directly governs the transcription of Atg16l1, Ambra1, Atg7 and Wipi2, which are important for autophagosome biogenesis. Defective autophagy in BRG1-deficient IECs results in excess reactive oxygen species (ROS), which leads to the defects in barrier integrity. Together, our results establish that BRG1 may represent an autophagy checkpoint that is pathogenetically linked to colitis and is therefore likely a potential therapeutic target for disease intervention.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 520
Author(s):  
Wenfeng Nie ◽  
Jinyu Wang

As essential structural components of ATP-dependent chromatin-remodeling complex, the nucleolus-localized actin-related proteins (ARPs) play critical roles in many biological processes. Among them, ARP4 is identified as an integral subunit of chromatin remodeling complex SWR1, which is conserved in yeast, humans and plants. It was shown that RNAi mediated knock-down of Arabidopsis thaliana ARP4 (AtARP4) could affect plant development, specifically, leading to early flowering. However, so far, little is known about how ARP4 functions in the SWR1 complex in plant. Here, we identified a loss-of-function mutant of AtARP4 with a single nucleotide change from glycine to arginine, which had significantly smaller leaf size. The results from the split luciferase complementation imaging (LCI) and yeast two hybrid (Y2H) assays confirmed its physical interaction with the scaffold and catalytic subunit of SWR1 complex, photoperiod-independent early flowering 1 (PIE1). Furthermore, mutation of AtARP4 caused altered transcription response of hundreds of genes, in which the number of up-regulated differentially expressed genes (DEGs) was much larger than those down-regulated. Although most DEGs in atarp4 are related to plant defense and response to hormones such as salicylic acid, overall, it has less overlapping with other swr1 mutants and the hta9 hta11 double-mutant. In conclusion, our results reveal that AtARP4 is important for plant growth and such an effect is likely attributed to its repression on gene expression, typically at defense-related loci, thus providing some evidence for the coordination of plant growth and defense, while the regulatory patterns and mechanisms are distinctive from other SWR1 complex components.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Young-Kwon Park ◽  
Ji-Eun Lee ◽  
Zhijiang Yan ◽  
Kaitlin McKernan ◽  
Tommy O’Haren ◽  
...  

AbstractCell type-specific enhancers are activated by coordinated actions of lineage-determining transcription factors (LDTFs) and chromatin regulators. The SWI/SNF chromatin remodeling complex BAF and the histone H3K4 methyltransferase MLL4 (KMT2D) are both implicated in enhancer activation. However, the interplay between BAF and MLL4 in enhancer activation remains unclear. Using adipogenesis as a model system, we identify BAF as the major SWI/SNF complex that colocalizes with MLL4 and LDTFs on active enhancers and is required for cell differentiation. In contrast, the promoter enriched SWI/SNF complex PBAF is dispensable for adipogenesis. By depleting BAF subunits SMARCA4 (BRG1) and SMARCB1 (SNF5) as well as MLL4 in cells, we show that BAF and MLL4 reciprocally regulate each other’s binding on active enhancers before and during adipogenesis. By focusing on enhancer activation by the adipogenic pioneer transcription factor C/EBPβ without inducing cell differentiation, we provide direct evidence for an interdependent relationship between BAF and MLL4 in activating cell type-specific enhancers. Together, these findings reveal a positive feedback between BAF and MLL4 in promoting LDTF-dependent activation of cell type-specific enhancers.


2014 ◽  
Vol 42 (14) ◽  
pp. 9074-9086 ◽  
Author(s):  
Ivelina Vassileva ◽  
Iskra Yanakieva ◽  
Michaela Peycheva ◽  
Anastas Gospodinov ◽  
Boyka Anachkova

Sign in / Sign up

Export Citation Format

Share Document