Bifidobacterium breve M‐16V alters the gut microbiota to alleviate OVA‐induced food allergy through IL‐33/ST2 signal pathway

2020 ◽  
Vol 235 (12) ◽  
pp. 9464-9473 ◽  
Author(s):  
Na Li ◽  
Yi Yu ◽  
Xuehua Chen ◽  
Shenshen Gao ◽  
Qingqing Zhang ◽  
...  
Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1682
Author(s):  
Ewa Łoś-Rycharska ◽  
Marcin Gołębiewski ◽  
Marcin Sikora ◽  
Tomasz Grzybowski ◽  
Marta Gorzkiewicz ◽  
...  

The gut microbiota in patients with food allergy, and the skin microbiota in atopic dermatitis patients differ from those of healthy people. We hypothesize that relationships may exist between gut and skin microbiota in patients with allergies. The aim of this study was to determine the possible relationship between gut and skin microbiota in patients with allergies, hence simultaneous analysis of the two compartments of microbiota was performed in infants with and without allergic symptoms. Fifty-nine infants with food allergy and/or atopic dermatitis and 28 healthy children were enrolled in the study. The skin and gut microbiota were evaluated using 16S rRNA gene amplicon sequencing. No significant differences in the α-diversity of dermal or fecal microbiota were observed between allergic and non-allergic infants; however, a significant relationship was found between bacterial community structure and allergy phenotypes, especially in the fecal samples. Certain clinical conditions were associated with characteristic bacterial taxa in the skin and gut microbiota. Positive correlations were found between skin and fecal samples in the abundance of Gemella among allergic infants, and Lactobacillus and Bacteroides among healthy infants. Although infants with allergies and healthy infants demonstrate microbiota with similar α-diversity, some differences in β-diversity and bacterial species abundance can be seen, which may depend on the phenotype of the allergy. For some organisms, their abundance in skin and feces samples may be correlated, and these correlations might serve as indicators of the host’s allergic state.


Life Sciences ◽  
2021 ◽  
pp. 120038
Author(s):  
Qian Li ◽  
Xinlei Tang ◽  
Jianghao Xu ◽  
Xingyuan Ren ◽  
Rui Wang ◽  
...  

2019 ◽  
Vol 7 (10) ◽  
pp. 463 ◽  
Author(s):  
Tulyeu ◽  
Kumagai ◽  
Jimbo ◽  
Watanabe ◽  
Yokoyama ◽  
...  

Increased intestinal permeability is thought to underlie the pathogenesis of food allergy. We explore the mechanism responsible for changes in the morphology and function of the intestinal barrier using a rat model of food allergy, focusing on the contribution of intestinal microbiota. Juvenile–young adult rats were sensitized with ovalbumin and treated with antibiotics or probiotics (Clostridium butyricum and Lactobacillus reuteri), respectively. The serum ovalbumin-IgE levels, intestinal permeability, histopathological features, tight junction (TJ)-associated proteins, Th2 cytokines, and gut microbiota in feces were analyzed in each group. Sensitized rats showed an increase in ovalbumin-IgE levels and intestinal permeability with gut mucosal inflammation, whereas rats that received probiotics were only mildly affected. Rats given ovalbumin, but not those given probiotics, showed a reduction in both TJ-related protein expression and localization. Th2 cytokine levels were increased in the sensitized rats, but not in those given probiotics. TJs in rats treated with ovalbumin and antibiotics were disrupted, but those in rats administered probiotics were undamaged. Clostridiaceae were increased in the probiotics groups, especially Alkaliphilus, relative to the ovalbumin-sensitized group. Gut microbiota appears to play a role in regulating epithelial barrier function, and probiotics may help to prevent food sensitization through the up-regulation of TJ proteins.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael R. Goldberg ◽  
Hadar Mor ◽  
Dafna Magid Neriya ◽  
Faiga Magzal ◽  
Efrat Muller ◽  
...  

Abstract Background Multiple studies suggest a key role for gut microbiota in IgE-mediated food allergy (FA) development, but to date, none has studied it in the persistent state. Methods To characterize the gut microbiota composition and short-chain fatty acid (SCFAs) profiles associated with major food allergy groups, we recruited 233 patients with FA including milk (N = 66), sesame (N = 38), peanut (N = 71), and tree nuts (N = 58), and non-allergic controls (N = 58). DNA was isolated from fecal samples, and 16S rRNA gene sequences were analyzed. SCFAs in stool were analyzed from patients with a single allergy (N = 84) and controls (N = 31). Results The gut microbiota composition of allergic patients was significantly different compared to age-matched controls both in α-diversity and β-diversity. Distinct microbial signatures were noted for FA to different foods. Prevotella copri (P. copri) was the most overrepresented species in non-allergic controls. SCFAs levels were significantly higher in the non-allergic compared to the FA groups, whereas P. copri significantly correlated with all three SCFAs. We used these microbial differences to distinguish between FA patients and non-allergic healthy controls with an area under the curve of 0.90, and for the classification of FA patients according to their FA types using a supervised learning algorithm. Bacteroides and P. copri were identified as taxa potentially contributing to KEGG acetate-related pathways enriched in non-allergic compared to FA. In addition, overall pathway dissimilarities were found among different FAs. Conclusions Our results demonstrate a link between IgE-mediated FA and the composition and metabolic activity of the gut microbiota.


2012 ◽  
Vol 95 (5) ◽  
pp. 1278-1287 ◽  
Author(s):  
Rebecca Wall ◽  
Tatiana M Marques ◽  
Orla O’Sullivan ◽  
R Paul Ross ◽  
Fergus Shanahan ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ayako Horigome ◽  
Ken Hisata ◽  
Toshitaka Odamaki ◽  
Noriyuki Iwabuchi ◽  
Jin-zhong Xiao ◽  
...  

The colonization and persistence of probiotics introduced into the adult human gut appears to be limited. It is uncertain, however, whether probiotics can successfully colonize the intestinal tracts of full-term and premature infants. In this study, we investigated the colonization and the effect of oral supplementation with Bifidobacterium breve M-16V on the gut microbiota of low birth weight (LBW) infants. A total of 22 LBW infants (12 infants in the M-16V group and 10 infants in the control group) were enrolled. B. breve M-16V was administrated to LBW infants in the M-16V group from birth until hospital discharge. Fecal samples were collected from each subject at weeks (3.7–9.3 weeks in the M-16V group and 2.1–6.1 weeks in the control group) after discharge. qPCR analysis showed that the administrated strain was detected in 83.3% of fecal samples in the M-16V group (at log10 8.33 ± 0.99 cell numbers per gram of wet feces), suggesting that this strain colonized most of the infants beyond several weeks post-administration. Fecal microbiota analysis by 16S rRNA gene sequencing showed that the abundance of Actinobacteria was significantly higher (P < 0.01), whereas that of Proteobacteria was significantly lower (P < 0.001) in the M-16V group as compared with the control group. Notably, the levels of the administrated strain and indigenous Bifidobacterium bacteria were both significantly higher in the M-16V group than in the control group. Our findings suggest that oral administration of B. breve M-16V led to engraftment for at least several weeks post-administration and we observed a potential overall improvement in microbiota formation in the LBW infants’ guts.


Sign in / Sign up

Export Citation Format

Share Document