scholarly journals Colonization of Supplemented Bifidobacterium breve M-16V in Low Birth Weight Infants and Its Effects on Their Gut Microbiota Weeks Post-administration

2021 ◽  
Vol 12 ◽  
Author(s):  
Ayako Horigome ◽  
Ken Hisata ◽  
Toshitaka Odamaki ◽  
Noriyuki Iwabuchi ◽  
Jin-zhong Xiao ◽  
...  

The colonization and persistence of probiotics introduced into the adult human gut appears to be limited. It is uncertain, however, whether probiotics can successfully colonize the intestinal tracts of full-term and premature infants. In this study, we investigated the colonization and the effect of oral supplementation with Bifidobacterium breve M-16V on the gut microbiota of low birth weight (LBW) infants. A total of 22 LBW infants (12 infants in the M-16V group and 10 infants in the control group) were enrolled. B. breve M-16V was administrated to LBW infants in the M-16V group from birth until hospital discharge. Fecal samples were collected from each subject at weeks (3.7–9.3 weeks in the M-16V group and 2.1–6.1 weeks in the control group) after discharge. qPCR analysis showed that the administrated strain was detected in 83.3% of fecal samples in the M-16V group (at log10 8.33 ± 0.99 cell numbers per gram of wet feces), suggesting that this strain colonized most of the infants beyond several weeks post-administration. Fecal microbiota analysis by 16S rRNA gene sequencing showed that the abundance of Actinobacteria was significantly higher (P < 0.01), whereas that of Proteobacteria was significantly lower (P < 0.001) in the M-16V group as compared with the control group. Notably, the levels of the administrated strain and indigenous Bifidobacterium bacteria were both significantly higher in the M-16V group than in the control group. Our findings suggest that oral administration of B. breve M-16V led to engraftment for at least several weeks post-administration and we observed a potential overall improvement in microbiota formation in the LBW infants’ guts.

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Yue-feng Li ◽  
Chuan-rui Zhu ◽  
Xue-lei Gong ◽  
Hui-ling Li ◽  
Li-kuan Xiong ◽  
...  

The very low birth weight (VLBW) infant is at great risk for marked dysbiosis of the gut microbiota. In the present study, a total of 36 VLBW infants were randomly divided into two groups, who were treated with combined probiotics and placebo, and 72 fecal specimens on days 14 and 28 of life were collected from them. Finally, 32 fecal specimens extracted from 16 preterm VLBW infants were qualified and analyzed using 16S rRNA gene sequencing. The primary outcome was to evaluate the change of gut microbiota in VLBW infants after combined probiotic supplement. The secondary outcome was to analyze the correlation gut microbial composition and levels of cytokines. We found that probiotic treatment, but not placebo, decreased the α-diversity of gut microbiota in VLBW infants. At the phylum level, probiotic treatment strongly increased the abundance of Firmicutes, whereas that of Proteobacteria was significantly reduced. At the family level, Streptococcaceae and Lactobacillaceae became prevalent after probiotic treatment, while the relative abundance of Enterobacteriaceae was reduced in the meantime. Most notably, significant correlations were observed between Lactobacillaceae abundance and serum cytokine levels. Further studies are required to shed more light on the characteristics of gut microbiota of VLBW neonates. And the modulation of microbiota should be considered to improve the survival rate of VLBW infants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongde Yang ◽  
Xuan Yu ◽  
Xuebing Liu ◽  
Guangya Liu ◽  
Kuan Zeng ◽  
...  

AbstractAs a severe public health problem, methamphetamine (METH) abuse places a heavy burden on families and society. A growing amount of evidence has indicated communication between gut microbiota and the CNS in drug addiction, with associations to neural, endocrine and immune pathways. Thus, we searched for alterations in the gut microbiota and their potential effects in METH users through 16S rRNA gene sequencing. A decreased Shannon index indicated lower bacterial diversity in the METH users than in the age-matched control group. The gut microbial community composition in the METH users was also altered, including reductions in Deltaproteobacteria and Bacteroidaceae abundances and increases in Sphingomonadales, Xanthomonadales, Romboutsia and Lachnospiraceae abundances. Moreover, the Fusobacteria abundance was correlated with the duration of METH use. Enterobacteriaceae, Ruminococcaceae, Bacteroides, and Faecalibacterium had statistically significant correlations with items related to the positive and negative symptoms of schizophrenia and to general psychopathology in the METH users, and all have previously been reported to be altered in individuals with psychotic syndromes, especially depression. Abstraction, one of the items of the cognitive assessment, was positively related to Blautia. These findings revealed alterations in the gut microbiota of METH users, and these alterations may play a role in psychotic syndrome and cognitive impairment. Although the mechanisms behind the links between these disorders and METH abuse are unknown, the relationships may indicate similarities in the pathogenesis of psychosis induced by METH abuse and other causes, providing a new paradigm for addiction and METH use disorder treatment.


Gut Microbes ◽  
2014 ◽  
Vol 5 (3) ◽  
pp. 304-503 ◽  
Author(s):  
Tiina Drell ◽  
Irja Lutsar ◽  
Jelena Štšepetova ◽  
Ülle Parm ◽  
Tuuli Metsvaht ◽  
...  

2004 ◽  
Vol 46 (5) ◽  
pp. 509-515 ◽  
Author(s):  
Yudong Li ◽  
Toshiaki Shimizu ◽  
Atsuto Hosaka ◽  
Noritsugu Kaneko ◽  
Yoshikazu Ohtsuka ◽  
...  

BMC Genomics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Cristina Alcon-Giner ◽  
Shabhonam Caim ◽  
Suparna Mitra ◽  
Jennifer Ketskemety ◽  
Udo Wegmann ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yao Su ◽  
Hong-Kun Wang ◽  
Xu-Pei Gan ◽  
Li Chen ◽  
Yan-Nan Cao ◽  
...  

Abstract Background The causes of gestational diabetes mellitus (GDM) are still unclear. Recent studies have found that the imbalance of the gut microbiome could lead to disorders of human metabolism and immune system, resulting in GDM. This study aims to reveal the different gut compositions between GDM and normoglycemic pregnant women and find the relationship between gut microbiota and GDM. Methods Fecal microbiota profiles from women with GDM (n = 21) and normoglycemic women (n = 32) were assessed by 16S rRNA gene sequencing. Fasting metabolic hormone concentrations were measured using multiplex ELISA. Results Metabolic hormone levels, microbiome profiles, and inferred functional characteristics differed between women with GDM and healthy women. Additionally, four phyla and seven genera levels have different correlations with plasma glucose and insulin levels. Corynebacteriales (order), Nocardiaceae (family), Desulfovibrionaceae (family), Rhodococcus (genus), and Bacteroidetes (phylum) may be the taxonomic biomarkers of GDM. Microbial gene functions related to amino sugar and nucleotide sugar metabolism were found to be enriched in patients with GDM. Conclusion Our study indicated that dysbiosis of the gut microbiome exists in patients with GDM in the second trimester of pregnancy, and gut microbiota might be a potential diagnostic biomarker for the diagnosis, prevention, and treatment of GDM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yue Hu ◽  
Fang Chen ◽  
Haiyong Ye ◽  
Bin Lu

AbstractStress is one of the major causes of irritable bowel syndrome (IBS), which is well-known for perturbing the microbiome and exacerbating IBS-associated symptoms. However, changes in the gut microbiome and metabolome in response to colorectal distention (CRD), combined with restraint stress (RS) administration, remains unclear. In this study, CRD and RS stress were used to construct an IBS rat model. The 16S rRNA gene sequencing was used to characterize the microbiota in ileocecal contents. UHPLC-QTOF-MS/MS assay was used to characterize the metabolome of gut microbiota. As a result, significant gut microbial dysbiosis was observed in stress-induced IBS rats, with the obvious enrichment of three and depletion of 11 bacterial taxa in IBS rats, when compared with those in the control group (q < 0.05). Meanwhile, distinct changes in the fecal metabolic phenotype of stress-induced IBS rats were also found, including five increased and 19 decreased metabolites. Furthermore, phenylalanine, tyrosine and tryptophan biosynthesis were the main metabolic pathways induced by IBS stress. Moreover, the altered gut microbiota had a strong correlation with the changes in metabolism of stress-induced IBS rats. Prevotella bacteria are correlated with the metabolism of 1-Naphthol and Arg.Thr. In conclusion, the gut microbiome, metabolome and their interaction were altered. This may be critical for the development of stress-induced IBS.


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1323 ◽  
Author(s):  
Fumika Mano ◽  
Kaori Ikeda ◽  
Erina Joo ◽  
Yoshihito Fujita ◽  
Shunsuke Yamane ◽  
...  

The purpose of this study was to examine the influence of two kinds of major Japanese staple foods, white rice and white bread, on gut microbiota against the background in which participants eat common side dishes. Seven healthy subjects completed the dietary intervention with two 1-week test periods with a 1-week wash-out period in cross-over design (UMIN registration UMIN000023142). White bread or white rice and 21 frozen prepared side dishes were consumed during the test periods. At baseline and at the end of each period, fasting blood samples, breath samples, and fecal samples were collected. For fecal samples, 16S rRNA gene sequencing was used to analyze the gut microbiota. After the bread period, the abundance of fecal Bifidobacterium genus (19.2 ± 14.5 vs. 6.2 ± 6.6 (%), p = 0.03), fasting glucagon-like peptide 1 (GLP-1) (13.6 ± 2.0 vs. 10.5 ± 2.9 (pg/mL), p = 0.03), and breath hydrogen (23.4 ± 9.9 vs. 8.2 ± 5.5 (ppm), p = 0.02) were significantly higher than those of after the rice period. Plasma SCFAs also tended to be higher after the bread period. White bread contains more dietary fiber than refined short grain rice. These findings suggest that indigestible carbohydrate intake from short grain rice as a staple food may be smaller than that of white bread.


PEDIATRICS ◽  
1985 ◽  
Vol 75 (1) ◽  
pp. 128-129
Author(s):  
SAVITRI P. KUMAR ◽  
ENDLA K. ANDAY

In Reply.— We agree with Weizman that quantification of enteric protein loss is best carried out by the use of51 Cr-albumin. Although this test has been used in adults and older children, there is no published study on the use of this method in neonates or low-birth-weight infants. The use of radioactive isotopes and the necessity of obtaining fecal samples without urinary contamination makes this an undesirable test in infants. Although the fecal clearance of α1-antitrypsin overcomes all the drawbacks of the 51Cr-albumin method, there are again no studies to date, on its use in neonates.


2020 ◽  
Vol 52 (12) ◽  
pp. 1959-1975
Author(s):  
Yu Wang ◽  
Weifan Yao ◽  
Bo Li ◽  
Shiyun Qian ◽  
Binbin Wei ◽  
...  

AbstractGut microbiota dysbiosis has a significant role in the pathogenesis of metabolic diseases, including obesity. Nuciferine (NUC) is a main bioactive component in the lotus leaf that has been used as food in China since ancient times. Here, we examined whether the anti-obesity effects of NUC are related to modulations in the gut microbiota. Using an obese rat model fed a HFD for 8 weeks, we show that NUC supplementation of HFD rats prevents weight gain, reduces fat accumulation, and ameliorates lipid metabolic disorders. Furthermore, 16S rRNA gene sequencing of the fecal microbiota suggested that NUC changed the diversity and composition of the gut microbiota in HFD-fed rats. In particular, NUC decreased the ratio of the phyla Firmicutes/Bacteroidetes, the relative abundance of the LPS-producing genus Desulfovibrio and bacteria involved in lipid metabolism, whereas it increased the relative abundance of SCFA-producing bacteria in HFD-fed rats. Predicted functional analysis of microbial communities showed that NUC modified genes involved in LPS biosynthesis and lipid metabolism. In addition, serum metabolomics analysis revealed that NUC effectively improved HFD-induced disorders of endogenous metabolism, especially lipid metabolism. Notably, NUC promoted SCFA production and enhanced intestinal integrity, leading to lower blood endotoxemia to reduce inflammation in HFD-fed rats. Together, the anti-obesity effects of NUC may be related to modulations in the composition and potential function of gut microbiota, improvement in intestinal barrier integrity and prevention of chronic low-grade inflammation. This research may provide support for the application of NUC in the prevention and treatment of obesity.


Sign in / Sign up

Export Citation Format

Share Document