Addition of activated carbon to batch activated sludge reactors in the treatment of landfill leachate and domestic wastewater

2001 ◽  
Vol 76 (8) ◽  
pp. 793-802 ◽  
Author(s):  
Özgür Aktaş ◽  
Ferhan Çeçen
2013 ◽  
Vol 448-453 ◽  
pp. 1399-1402 ◽  
Author(s):  
Ling Zhao ◽  
Xiao Gu Cheng ◽  
Ping He Yin ◽  
Gang Lu ◽  
Jun Chang Suo

The aim of this study was to check the effectiveness of microelectrolysis for the pretreatment of a municipal landfill leachate with the objective improving its overall biodegradability, evaluated in terms of BOD5/COD ratio, up to a value compatible with biological treatment. The best microelectrolysis operational conditions for achieving the desired COD values were: pH=2.0; granular activated carbon (GAC) =10 g/L; mass ratio of zero iron (Fe0)/GAC=2:1; reaction time=90 min. The BOD5/COD was significantly improved from 0.12 to 0.31, which allowed an almost 85% removal of COD by a sequential activated sludge process. The results show that the microelectrolysis is a promising technology to improve the biodegradability of mature landfill leachate.


2019 ◽  
Vol 5 (2) ◽  
pp. 268-276 ◽  
Author(s):  
Min Zheng ◽  
Siqi Li ◽  
Qian Dong ◽  
Xia Huang ◽  
Yanchen Liu

A sludge contact is proposed to form high-level free ammonia exposure for co-treatment of landfill leachate with domestic wastewater.


2015 ◽  
Vol 17 (4) ◽  
pp. 727-737 ◽  

<div> <p>Current study was carried out to investigate the heavy metals removal from landfill leachate and urban wastewater by powdered activated carbon and powdered zeolite augmented SBR technique. The research was carried out in six 2000 mL breakers (working size was 1200 ml). The reactors were parted into 2 groups covering 3 for activated carbon augmented SBRs (PAC-SBR), and 3 for powdered zeolite augmented SBRs (PZE-SBR). The response surface methodology (RSM) and the central composite design (CCD) were employed to explain the most advantageous settings of the independent variables (aeration rate<br /> (l min<sup>-1</sup>), reaction time (h), and leachate-to-wastewater mixing ration (%; v/v)) and their resopnses (dependent variables including Fe, Mn, Ni and Cd). The results indicated that the PZE-SBR showed higher performance in removal efficiencies while compared to PAC-SBR. At the optimum conditions of contact time (13.83 h), aeration rate (2.81 l min<sup>-1</sup>) and leachate to domestic wastewater proportion (20.00%) for the PZE-SBR, the removal efficiencies for Fe, Mn, Ni, and Cd were 65.65%, 61.56, 63.41%, and 60.44%, respectively.</p> </div> <p>&nbsp;</p>


1987 ◽  
Vol 19 (3-4) ◽  
pp. 471-482 ◽  
Author(s):  
W. J. Weber ◽  
B. E. Jones ◽  
L. E. Katz

The addition of powdered activated carbon (PAC) to activated sludge treatment systems to enhance removal of specific toxic organic compounds from wastewater was evaluated. Nine organic compounds encompassing a range of solubility, volatility, biodegradability, and adsorptive properties were studied. Kate and equilibrium investigations were conducted to quantify the removal mechanisms of volatilization, biodegradation, biosorption, and carbon adsorption. Results from steady-state bioreactor studies showed that the addition of less than 100 mg/ℓ powdered activated carbon to the influent did not enhance the removal of the biodegradable target compounds investigated: benzene, toluene, ethylbenzene, o-xylene, chlorobenzene, and nitrobenzene. Significantly improved removals of the poorly degradable and non-biodegradable compounds 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, and lindane occurred at influent powdered carbon concentrations in the 12.5 to 25 mg/ℓ range. Influent powdered carbon concentrations of 100 mg/ℓ effected overall removals of greater than 90%. The addition of powdered activated carbon not only reduced effluent concentrations but also reduced the amounts of the volatile compounds stripped to the atmosphere.


1991 ◽  
Vol 24 (5) ◽  
pp. 233-240 ◽  
Author(s):  
Nik Fuaad Nik Abllah ◽  
Aik Heng Lee

A laboratory study was conducted to determine the feasibility of batch activated sludge reactor for treating pineapple wastewater and to examine the effects of bioaugmentation on treatment performance. The experimental set-up consists of eleven batch reactors. Activated sludge obtained from a wastewater treatment plant treating domestic wastewater was used as seed for the reactors. Synthetic pineapple wastewater was used as feed for the reactors. The eleven reactors were arranged to evaluate the total organic removal, nitrification, and sludge production by bioaugmentation process. Three major factors considered were influent organic loading, ammonia-nitrogen, and dosage of bacterial-culture-product addition. Removal of TOG (total organic carbon), sludge production in terms of SS(suspended solids), and ammonia-nitrogen removal variation are used as evaluation parameters. The TOC removal efficiency after the end of a 48 hour reactor run, for influent TOC of 350.14 to 363.30 mg/l, and 145.92 to 169.66 mg/l, was 94.41 to 95.89%, and 93.72 to 94.73% respectively. Higher organic removal was observed in the bioaugmented reactors with higher organic loading. The better organic removal efficiency in the bioaugmented reactors was probably due to activities of bacteria added. The test results also indicated that sludge yield was enhanced by the bacteria additive and high bacteria dosage produced less sludge. Bioaugmentation was observed to be a suitable alternative for enhancing the biological treatment of pineapple wastewater.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 337
Author(s):  
Sara Mesa Medina ◽  
Ana Rey ◽  
Carlos Durán-Valle ◽  
Ana Bahamonde ◽  
Marisol Faraldos

Two commercial activated carbon were functionalized with nitric acid, sulfuric acid, and ethylenediamine to induce the modification of their surface functional groups and facilitate the stability of corresponding AC-supported iron catalysts (Fe/AC-f). Synthetized Fe/AC-f catalysts were characterized to determine bulk and surface composition (elemental analysis, emission spectroscopy, XPS), textural (N2 isotherms), and structural characteristics (XRD). All the Fe/AC-f catalysts were evaluated in the degradation of phenol in ultrapure water matrix by catalytic wet peroxide oxidation (CWPO). Complete pollutant removal at short reaction times (30–60 min) and high TOC reduction (XTOC = 80 % at ≤ 120 min) were always achieved at the conditions tested (500 mg·L−1 catalyst loading, 100 mg·L−1 phenol concentration, stoichiometric H2O2 dose, pH 3, 50 °C and 200 rpm), improving the results found with bare activated carbon supports. The lability of the interactions of iron with functionalized carbon support jeopardizes the stability of some catalysts. This fact could be associated to modifications of the induced surface chemistry after functionalization as a consequence of the iron immobilization procedure. The reusability was demonstrated by four consecutive CWPO cycles where the activity decreased from 1st to 3rd, to become recovered in the 4th run. Fe/AC-f catalysts were applied to treat two real water matrices: the effluent of a wastewater treatment plant with a membrane biological reactor (WWTP-MBR) and a landfill leachate, opening the opportunity to extend the use of these Fe/AC-f catalysts for complex wastewater matrices remediation. The degradation of phenol spiked WWTP-MBR effluent by CWPO using Fe/AC-f catalysts revealed pH of the reaction medium as a critical parameter to obtain complete elimination of the pollutant, only reached at pH 3. On the contrary, significant TOC removal, naturally found in complex landfill leachate, was obtained at natural pH 9 and half stoichiometric H2O2 dose. This highlights the importance of the water matrix in the optimization of the CWPO operating conditions.


Sign in / Sign up

Export Citation Format

Share Document