Influence of the specific surface area and silver crystallite size of mesoporous Ag/SrTiO 3 on the selectivity enhancement of ethylene oxide production

2019 ◽  
Vol 94 (12) ◽  
pp. 3839-3849 ◽  
Author(s):  
Shekoufeh Adhami ◽  
Mohsen Nasr Esfahany ◽  
Kari Eränen ◽  
Markus Peurla ◽  
Ermei Mäkilä ◽  
...  
2014 ◽  
Vol 604 ◽  
pp. 93-101
Author(s):  
Maris Kodols ◽  
Sabine Didrihsone ◽  
Janis Grabis

The influence of glycine, glycerine, ethylene glycol and citric acid fuel and their ratio to NO3- on formation and dispersity of Bi2WO6 nanoparticles prepared by combustion synthesis has been studied. The pure crystalline Bi2WO6 with specific surface area 24,8 m2/g and crystallite size of 28 nm was obtained by using glycerine as fuel at its ratio to NO3- of 0,67. The photocatalytic activity of the prepared Bi2WO6 in degradation of methylene blue depended on its specific surface area of samples and solution pH.


2008 ◽  
Vol 587-588 ◽  
pp. 468-472
Author(s):  
J.M. González ◽  
José A. Rodríguez ◽  
Enrique J. Herrera

Nickel powder was dry-milled using a high-energy disc-oscillating mill. The average particle size increases and the specific surface area diminishes with milling time. Crystallite size decreases and microstrains increase, under the same conditions, as shown by X-ray analysis. At 120 min milling time, the crystallite size has a value of 17 nm, i.e., a nanostructured powder, with a perturbed lattice, is obtained. The above results have been compared with published data about the effects of milling on a ceramic powder. There is, in both cases, a general agreement concerning the changes produced in crystallite size. Nevertheless, opposite results are reached regarding particle size and specific surface area.


Author(s):  
M. Troubitsin ◽  
Viet Hung Hoang ◽  
L. Furda

The object of our investigation is a biomimetic calcium-phosphate nanocomposite doped by silicate and carbonate anions (BMHAP) synthesized by chemical deposition from aqueous solutions. The obtained samples are investigated using X-ray phase analysis (XRD), FTIR spectroscopy, and low-temperature nitrogen adsorption (BET method). The influence of the techno chemical synthesis parameters on the products characteristics (including phase composition, crystal lattice parameters, average crystallite size, specific surface area) is evaluated. The study on the effect of the synthesis temperature shows that with increasing in temperature from 22°C to 80°C, reveals a slight increase in the parameters of unit cells a and c, which leads to an increase in its volume. There is also a tendency towards a decrease in the average size of coherent scattering regions of crystallites (from 7,52 to 4,65 nm) and specific surface area (from 192,51 to 74,72 m2/g), but the pore volume and average pore diameter of the synthesized powders increases. The effect of the aging time of the sediment in the mother liquor is studied from 0,5 to 24 hours. It is found that with an increase in the maturation time of the sediment, the percent crystallinity of the powders improves by 1,7 times, an increase in the specific surface area from 163,43 to 192,51 m2/g and a slight decrease in the pore volume and average pore size of the samples are observed. The impact of the stirring rate of the reagents is investigated. An increase in speed from 300 to 1300 rpm has been shown to decrease the average crystallite size from 8,80 to 6,41 nm, and as a result, to increase the specific surface area of the synthesized samples from 178,58 to 192,51 m2/g, respectively.


2015 ◽  
Vol 80 (12) ◽  
pp. 1529-1540 ◽  
Author(s):  
Tatjana Novakovic ◽  
Ljiljana Rozic ◽  
Srdjan Petrovic ◽  
Zorica Vukovic ◽  
Miodrag Mitric

A statistical design was used to investigate the effect of various processing conditions on the structure of sol-gel derived Mg(II) doped alumina. Six processing variables were selected based on the Plackett-Burman design: concentration of magnesium nitrate, time and temperature of alcohol evaporation, temperature and time of annealing and heating rate were changed at two levels. For every set of conditions, samples with different specific surface area and degree of crystallinity were obtained. Analysis of the results showed that annealing temperature , heating rate and concentration of magnesium nitrate were the main factors affecting average crystallite size of the predominant phase of alumina. In the case of the specific surface area, two of selected six variables had pronounced effect; however the temperature of annealing was more effective than others. The present results show that the proposed model that uses crystallite size as a response variables is preferable to further research.


2021 ◽  
Author(s):  
Vinod Kumar ◽  
Ishpal Rawal ◽  
Vipin Kumar

Abstract In the present study, we reports the fabrication of n-ZnO/p-Si++ hetero-junction devices for the detection of hydrogen leakage in ambient air environment. For the fabrication of n-ZnO/p-Si++ hetero-junction devices, high quality ZnO thin films are grown by controlled thermal evaporation technique on the highly doped p-type silicon substrates at 400 oC. The two sets of films deposited at 400 o C are further annealed at 500 and 600 oC to examine the effect of annealing temperature on the structural, morphology, electrical and gas sensing properties of the deposited films. It is revealed from the x-ray diffraction studies that the crystallite size, and the density of the films increase from 22.55 to 24.95 nm, from 5.65 to 5.68 g/cm3, respectively, on increasing the fabrication temperature from 400 to 600 oC. In contrast to it, the grain boundary specific surface area decrease from 8.79 x107 to 7.88 x107 m-1 on changing the fabrication temperature from 400 to 600 oC. The hydrogen gas sensing response of the fabricated devices has also been recorded at different operating temperatures and different hydrogen concentrations (200 to 1000ppm) in air ambient. It is found that the gas sensing response of the fabricated devices increase with increase in operating temperature (up to 100 oC) and decease beyond this temperature. The gas sensing responses of the devices fabricated at 400, 500 and 600 oC are found to be 97.22, 64.23 and 40.77 % at 1000 ppm of hydrogen. A decrease in gas sensing response with fabrication temperature is attributed to the increase in crystallite size (quantum size effect), density of films (i.e. lower penetration) and decrease in grain boundary specific surface area (i.e. active sites) with annealing temperature. The mechanism of the gas sensing in these devices has also been systematically analyzed under different models.


Sign in / Sign up

Export Citation Format

Share Document