Effects of trapping temperature and film thickness in purge and trap with whole column cryotrapping on fused silica columns

1986 ◽  
Vol 9 (1) ◽  
pp. 18-29 ◽  
Author(s):  
J. F. Pankow
MRS Advances ◽  
2016 ◽  
Vol 1 (7) ◽  
pp. 465-469 ◽  
Author(s):  
Emma G. Langford ◽  
Kenneth D. Shaughnessy ◽  
Thomas C. Devore ◽  
David Lawrence ◽  
Costel Constantin

ABSTRACTThin films of organic semiconductor PEDOT:PSS deposited onto silicon and fused silica substrates. These films were then treated with sulfuric acid (H2SO4) for various amounts of time (i.e., 10, 20, 40, 60, and 80 minutes). Preliminary results obtained with FT-IR, UV-VIS, and Van DerPauw conductivity methods suggest that the H2SO4 removes the PSS isonomer from the PEDOT:PSS system. This PSS removal also induces a decrease in film thickness.


2002 ◽  
Vol 750 ◽  
Author(s):  
Shuichi Miyabe ◽  
Masami Aono ◽  
Nobuaki Kitazawa ◽  
Yoshihisa Watanabe

ABSTRACTAluminum nitride (AlN) thin films with different thickness were synthesized by ion-beam assisted deposition on various substrates, Corning 7059 glass, fused silica, Si single crystal, and sapphire, which show the hardness ranging from 7 to 37 GPa. Effects of substrate materials on indentation-hardness of AlN films were studied by using a nanoindentation system equipped with a diamond Berkovich indenter. The maximum force applied to the films was kept at 3 mN. For the films on the Corning 7059 glass substrate, when the normalized penetration depth to the film thickness is 0.98, the film hardness is found to be about 7 GPa, which is close to the hardness of the substrate. While the normalized penetration depth is reduced to 0.11, the film hardness becomes to be about 16 GPa. On the other hand, for the films on the sapphire substrate, when the normalized penetration depth is 0.83, the film hardness is observed to be about 25 GPa, while the normalized penetration depth is reduced to 0.10, the film hardness is found to be about 15 GPa. These results reveal that when the normalized penetration depth to the film thickness is about 0.1, the hardness of the AlN film can be evaluated to be about 15 GPa without being affected by substrate materials.


Author(s):  
Thomas Coquil ◽  
Neal Hutchinson ◽  
Laurent Pilon ◽  
Erik Richman ◽  
Sarah Tolbert

This paper reports the cross-plane thermal conductivity of highly ordered cubic and hexagonal templated mesoporous amorphous silica thin films synthesized by evaporation-induced self-assembly process. Cubic and hexagonal films featured spherical and cylindrical pores and average porosity of 25% and 45%, respectively. The pore diameter ranged from 3 to 18 nm and film thickness from 80 to 540 nm while the average wall thickness varied from 3 to 12 nm. The thermal conductivity was measured at room temperature using the 3ω method. The experimental setup and the associated analysis were validated by comparing the thermal conductivity measurements with data reported in the literature for the silicon substrate and for high quality thermal oxide thin films with thickness ranging from 100 to 500 nm. The cross-plane thermal conductivity of the synthesized mesoporous silica thin films does not show strong dependence on pore size, wall thickness, or film thickness. This is due to the fact that heat is mainly carried by very localized non propagating vibrational modes. The average thermal conductivity for the cubic mesoporous silica films was 0.30 ± 0.02 W/mK, while it was 0.20 ± 0.01 W/mK for the hexagonal films. This corresponds to a reduction of 79% and 86% from bulk fused silica at room temperature.


2003 ◽  
Vol 795 ◽  
Author(s):  
M. Capanu ◽  
A. Cervin-Lawry ◽  
A. Patel ◽  
I. Koutsaroff ◽  
P. Woo ◽  
...  

ABSTRACTThe present work uses wafer curvature (disk) method to measure the temperature variation of the biaxial modulus and the thermal expansion coefficient TEC from 25°C to 205°C. The following thin films were measured: PolySi, low stress LPCVD SixNy and (Ba0.7, Sr0.3)TiO3 (BST). To improve the precision, perfect circular thin wafers were used: 4 inches circular 280μm thick <111>Si and 450μm thick Fused Silica. The measurements were performed using a commercial Tencor FLX2320 Stress Measurement System. The film thickness was measured with Tencor TF1 thin film optical system.


Author(s):  
R.A. Ploc

Samples of low-nickel Zircaloy-2 (material MLI-788-see(1)), when anodically polarized in neutral 5 wt% NaCl solutions, were found to be susceptible to pitting and stress corrosion cracking. The SEM revealed that pitting of stressed samples was occurring below a 2000Å thick surface film which behaved differently from normal zirconium dioxide in that it did not display interference colours. Since the initial film thickness was approximately 65Å, attempts were made to examine the product film by transmission electron microscopy to deduce composition and how the corrosion environment could penetrate the continuous layer.


Author(s):  
E. F. Lindsey ◽  
C. W. Price ◽  
E. L. Pierce ◽  
E. J. Hsieh

Columnar structures produced by DC magnetron sputtering can be altered by using RF biased sputtering or by exposing the film to nitrogen pulses during sputtering, and these techniques are being evaluated to refine the grain structure in sputtered beryllium films deposited on fused silica substrates. Beryllium is brittle, and fractures in sputtered beryllium films tend to be intergranular; therefore, a convenient technique to analyze grain structure in these films is to fracture the coated specimens and examine them in an SEM. However, fine structure in sputtered deposits is difficult to image in an SEM, and both the low density and the low secondary electron emission coefficient of beryllium seriously compound this problem. Secondary electron emission can be improved by coating beryllium with Au or Au-Pd, and coating also was required to overcome severe charging of the fused silica substrate even at low voltage. The coating structure can obliterate much of the fine structure in beryllium films, but reasonable results were obtained by using the high-resolution capability of an Hitachi S-800 SEM and either ion-beam coating with Au-Pd or carbon coating by thermal evaporation.


Author(s):  
T.E. Pratt ◽  
R.W. Vook

(111) oriented thin monocrystalline Ni films have been prepared by vacuum evaporation and examined by transmission electron microscopy and electron diffraction. In high vacuum, at room temperature, a layer of NaCl was first evaporated onto a freshly air-cleaved muscovite substrate clamped to a copper block with attached heater and thermocouple. Then, at various substrate temperatures, with other parameters held within a narrow range, Ni was evaporated from a tungsten filament. It had been shown previously that similar procedures would yield monocrystalline films of CU, Ag, and Au.For the films examined with respect to temperature dependent effects, typical deposition parameters were: Ni film thickness, 500-800 A; Ni deposition rate, 10 A/sec.; residual pressure, 10-6 torr; NaCl film thickness, 250 A; and NaCl deposition rate, 10 A/sec. Some additional evaporations involved higher deposition rates and lower film thicknesses.Monocrystalline films were obtained with substrate temperatures above 500° C. Below 450° C, the films were polycrystalline with a strong (111) preferred orientation.


Author(s):  
George C. Ruben

Single molecule resolution in electron beam sensitive, uncoated, noncrystalline materials has been impossible except in thin Pt-C replicas ≤ 150Å) which are resistant to the electron beam destruction. Previously the granularity of metal film replicas limited their resolution to ≥ 20Å. This paper demonstrates that Pt-C film granularity and resolution are a function of the method of replication and other controllable factors. Low angle 20° rotary , 45° unidirectional and vertical 9.7±1 Å Pt-C films deposited on mica under the same conditions were compared in Fig. 1. Vertical replication had a 5A granularity (Fig. 1c), the highest resolution (table), and coated the whole surface. 45° replication had a 9Å granulartiy (Fig. 1b), a slightly poorer resolution (table) and did not coat the whole surface. 20° rotary replication was unsuitable for high resolution imaging with 20-25Å granularity (Fig. 1a) and resolution 2-3 times poorer (table). Resolution is defined here as the greatest distance for which the metal coat on two opposing faces just grow together, that is, two times the apparent film thickness on a single vertical surface.


Sign in / Sign up

Export Citation Format

Share Document