Three-Dimensional Collagen Gel Networks for Neural Stem Cell-Based Neural Tissue Engineering

2005 ◽  
Vol 227 (1) ◽  
pp. 327-334 ◽  
Author(s):  
Wu Ma ◽  
Silvia Chen ◽  
Wendy Fitzgerald ◽  
Dragan Maric ◽  
Hsingch J. Lin ◽  
...  
Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 658 ◽  
Author(s):  
Ho Bei ◽  
Yuhe Yang ◽  
Qiang Zhang ◽  
Yu Tian ◽  
Xiaoming Luo ◽  
...  

Graphene has made significant contributions to neural tissue engineering due to its electrical conductivity, biocompatibility, mechanical strength, and high surface area. However, it demonstrates a lack of biological and chemical cues. Also, it may cause potential damage to the host body, limiting its achievement of efficient construction of neural tissues. Recently, there has been an increasing number of studies showing that combining graphene with other materials to form nano-composites can provide exceptional platforms for both stimulating neural stem cell adhesion, proliferation, differentiation and neural regeneration. This suggests that graphene nanocomposites are greatly beneficial in neural regenerative medicine. In this mini review, we will discuss the application of graphene nanocomposites in neural tissue engineering and their limitations, through their effect on neural stem cell differentiation and constructs for neural regeneration.


Lab on a Chip ◽  
2016 ◽  
Vol 16 (14) ◽  
pp. 2551-2571 ◽  
Author(s):  
Mahdi Karimi ◽  
Sajad Bahrami ◽  
Hamed Mirshekari ◽  
Seyed Masoud Moosavi Basri ◽  
Amirala Bakhshian Nik ◽  
...  

Overall process of stem cell derivation and isolation, as well as microfluidic stem cell culture and neural tissue engineering.


RSC Advances ◽  
2019 ◽  
Vol 9 (63) ◽  
pp. 36838-36848
Author(s):  
Negar Mansouri ◽  
Said F. Al-Sarawi ◽  
Jagan Mazumdar ◽  
Dusan Losic

In this study, a bio-fabrication method has been developed for the preparation of 3D graphene–alginate composite scaffolds with great potential for neural tissue engineering.


2014 ◽  
Vol 25 (5) ◽  
pp. 562-567 ◽  
Author(s):  
Shiva Irani ◽  
Mojgan Zandi ◽  
Najmeh Salamian ◽  
Seyed Mahdi Saeed ◽  
Morteza Daliri Joupari ◽  
...  

2016 ◽  
Vol 4 (5) ◽  
pp. 768-784 ◽  
Author(s):  
Stephanie Knowlton ◽  
Yongku Cho ◽  
Xue-Jun Li ◽  
Ali Khademhosseini ◽  
Savas Tasoglu

Three-dimensional neural tissue engineering has significantly advanced the development of neural disease models and replacement tissues for patients by leveraging the unique capabilities of stem cells.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3876
Author(s):  
Diana María Osorio-Londoño ◽  
José Rafael Godínez-Fernández ◽  
Ma. Cristina Acosta-García ◽  
Juan Morales-Corona ◽  
Roberto Olayo-González ◽  
...  

Promising strategies for neural tissue engineering are based on the use of three-dimensional substrates for cell anchorage and tissue development. In this work, fibrillar scaffolds composed of electrospun randomly- and aligned-oriented fibers coated with plasma synthesized pyrrole polymer, doped and undoped with iodine, were fabricated and characterized. Infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction analysis revealed the functional groups and molecular integration of each scaffold, as well as the effect of plasma polymer synthesis on crystallinity. Scanning microscopy imaging demonstrated the porous fibrillar micrometric structure of the scaffolds, which afforded adhesion, infiltration, and survival for the neural cells. Orientation analysis of electron microscope images confirmed the elongation of neurite-like cell structures elicited by undoped plasma pyrrole polymer-coated aligned scaffolds, without any biochemical stimuli. The MTT colorimetric assay validated the biocompatibility of the fabricated composite materials, and further evidenced plasma pyrrole polymer-coated aligned scaffolds as permissive substrates for the support of neural cells. These results suggest plasma synthesized pyrrole polymer-coated aligned scaffolds are promising materials for tissue engineering applications.


2005 ◽  
Vol 27 (4) ◽  
pp. 429-432 ◽  
Author(s):  
Tatsuki Itoh ◽  
Takao Satou ◽  
Kensaku Dote ◽  
Shigeo Hashimoto ◽  
Hiroyuki Ito

2017 ◽  
Vol 5 (10) ◽  
pp. 2024-2034 ◽  
Author(s):  
Shuping Wang ◽  
Shui Guan ◽  
Jianqiang Xu ◽  
Wenfang Li ◽  
Dan Ge ◽  
...  

Engineering scaffolds with excellent electro-activity is increasingly important in tissue engineering and regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document