scholarly journals Graphene-Based Nanocomposites for Neural Tissue Engineering

Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 658 ◽  
Author(s):  
Ho Bei ◽  
Yuhe Yang ◽  
Qiang Zhang ◽  
Yu Tian ◽  
Xiaoming Luo ◽  
...  

Graphene has made significant contributions to neural tissue engineering due to its electrical conductivity, biocompatibility, mechanical strength, and high surface area. However, it demonstrates a lack of biological and chemical cues. Also, it may cause potential damage to the host body, limiting its achievement of efficient construction of neural tissues. Recently, there has been an increasing number of studies showing that combining graphene with other materials to form nano-composites can provide exceptional platforms for both stimulating neural stem cell adhesion, proliferation, differentiation and neural regeneration. This suggests that graphene nanocomposites are greatly beneficial in neural regenerative medicine. In this mini review, we will discuss the application of graphene nanocomposites in neural tissue engineering and their limitations, through their effect on neural stem cell differentiation and constructs for neural regeneration.

2005 ◽  
Vol 227 (1) ◽  
pp. 327-334 ◽  
Author(s):  
Wu Ma ◽  
Silvia Chen ◽  
Wendy Fitzgerald ◽  
Dragan Maric ◽  
Hsingch J. Lin ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hong Cheng ◽  
Yan Huang ◽  
Hangqi Yue ◽  
Yubo Fan

Nerve injuries and neurodegenerative disorders remain serious challenges, owing to the poor treatment outcomes of in situ neural stem cell regeneration. The most promising treatment for such injuries and disorders is stem cell-based therapies, but there remain obstacles in controlling the differentiation of stem cells into fully functional neuronal cells. Various biochemical and physical approaches have been explored to improve stem cell-based neural tissue engineering, among which electrical stimulation has been validated as a promising one both in vitro and in vivo. Here, we summarize the most basic waveforms of electrical stimulation and the conductive materials used for the fabrication of electroactive substrates or scaffolds in neural tissue engineering. Various intensities and patterns of electrical current result in different biological effects, such as enhancing the proliferation, migration, and differentiation of stem cells into neural cells. Moreover, conductive materials can be used in delivering electrical stimulation to manipulate the migration and differentiation of stem cells and the outgrowth of neurites on two- and three-dimensional scaffolds. Finally, we also discuss the possible mechanisms in enhancing stem cell neural differentiation using electrical stimulation. We believe that stem cell-based therapies using biocompatible conductive scaffolds under electrical stimulation and biochemical induction are promising for neural regeneration.


2017 ◽  
Vol 89 (12) ◽  
pp. 1799-1808 ◽  
Author(s):  
Sakthivel Nagarajan ◽  
Céline Pochat-Bohatier ◽  
Sébastien Balme ◽  
Philippe Miele ◽  
S. Narayana Kalkura ◽  
...  

AbstractElectrospinning is a versatile technique to produce micron or nano sized fibers using synthetic or bio polymers. The unique structural characteristic of the electrospun mats (ESM) which mimics extracellular matrix (ECM) found influential in regenerative tissue engineering application. ESM with different morphologies or ESM functionalizing with specific growth factors creates a favorable microenvironment for the stem cell attachment, proliferation and differentiation. Fiber size, alignment and mechanical properties affect also the cell adhesion and gene expression. Hence, the effect of ESM physical properties on stem cell differentiation for neural, bone, cartilage, ocular and heart tissue regeneration will be reviewed and summarized. Electrospun fibers having high surface area to volume ratio present several advantages for drug/biomolecule delivery. Indeed, controlling the release of drugs/biomolecules is essential for sustained delivery application. Various possibilities to control the release of hydrophilic or hydrophobic drug from the ESM and different electrospinning methods such as emulsion electrospinning and coaxial electrospinning for drug/biomolecule loading are summarized in this review.


Lab on a Chip ◽  
2016 ◽  
Vol 16 (14) ◽  
pp. 2551-2571 ◽  
Author(s):  
Mahdi Karimi ◽  
Sajad Bahrami ◽  
Hamed Mirshekari ◽  
Seyed Masoud Moosavi Basri ◽  
Amirala Bakhshian Nik ◽  
...  

Overall process of stem cell derivation and isolation, as well as microfluidic stem cell culture and neural tissue engineering.


2014 ◽  
Vol 25 (5) ◽  
pp. 562-567 ◽  
Author(s):  
Shiva Irani ◽  
Mojgan Zandi ◽  
Najmeh Salamian ◽  
Seyed Mahdi Saeed ◽  
Morteza Daliri Joupari ◽  
...  

2020 ◽  
Vol 35 (3) ◽  
pp. 216-227
Author(s):  
Yuqing Wang ◽  
Haoran Yu ◽  
Haifeng Liu ◽  
Yubo Fan

The desired scaffolds for neural tissue engineering need to have electrical conductivity. In this study, we doubly coated graphene oxide and polypyrrole on silk fibroin scaffolds (SF@GO-PPY) by a facile method to improve its electrical conductivity. The graphene oxide–polypyrrole double coating was distributed homogeneously on silk fibroin scaffolds. Compared with silk fibroin scaffolds, the SF@GO-PPY scaffold showed higher electrical conductivity, electrochemical property, mechanical property, and thermal stability. The π–π stacking interaction between polypyrrole and graphene oxide might contribute to the superior conductive and electrochemical property of the SF@GO-PPY scaffold. Moreover, in vitro cell experiment carried out on SH-SY5Y cells showed no cytotoxicity of all the scaffolds. Thus, the results indicated that the SF@GO-PPY scaffold might be a suitable candidate for the application in neural regeneration field.


2017 ◽  
Vol 5 (10) ◽  
pp. 2024-2034 ◽  
Author(s):  
Shuping Wang ◽  
Shui Guan ◽  
Jianqiang Xu ◽  
Wenfang Li ◽  
Dan Ge ◽  
...  

Engineering scaffolds with excellent electro-activity is increasingly important in tissue engineering and regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document