A finite strain elasto‐plastic material model incorporating kinematic and isotropic hardening for thermoplastic polymers

PAMM ◽  
2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Sebastian Felder ◽  
Jaan‐Willem Simon ◽  
Stefanie Reese
2018 ◽  
Vol 157 ◽  
pp. 06003 ◽  
Author(s):  
Ladislav Écsi ◽  
Pavel Élesztos ◽  
Roland Jančo

In this paper an alternative J2 material model with isotropic hardening for finite-strain elastoplastic analyses is presented. The model is based on a new nonlinear continuum mechanical theory of finite deformations of elastoplastic media which allows us to describe the plastic flow in terms of various instances of the yield surface and corresponding stress measures in the initial and current configurations of the body. The approach also allows us to develop thermodynamically consistent material models in every respect. Consequently, the models not only do comply with the principles of material modelling, but also use constitutive equations, evolution equations and even ‘normality rules’ during return mapping which can be expressed in terms of power conjugate stress and strain measures or their objective rates. Therefore, such models and the results of the analyses employing them no longer depend on the description and the particularities of the material model formulation. Here we briefly present an improved version of our former material model capable of modelling ductile-to brittle failure mode transition and demonstrate the model in a numerical example using a fully coupled thermal-structural analysis.


2018 ◽  
Vol 23 (2) ◽  
pp. 339-353 ◽  
Author(s):  
L. Écsi ◽  
P. Élesztős

Abstract In this paper an alternative material model using a generalized J2 finite-strain flow plasticity theory with isotropic hardening is presented. The model is based on a new nonlinear continuum mechanical theory of finite deformations of elasto-plastic media which allows for the development of objective and thermodynamically consistent material models. As a result, the constitutive equation, the evolution equation and even the ‘normality rule’, characterising the plastic flow in the material during return mapping, can be expressed in various forms, using several instances of the yield surface and corresponding pairs of stress measures and strain rates, respectively, which are conjugate with respect to the internal mechanical power and its arbitrary higher order time derivative. Therefore the results of the material model when used in numerical analyses are not affected by the description and particularities of the material model formulation. Here, we briefly outline the nonlinear continuum theory along with a detailed description of the material model and finally present the model in a numerical example using a cross-shaped specimen in biaxial tension.


2006 ◽  
Vol 5-6 ◽  
pp. 351-358 ◽  
Author(s):  
N. Ahmed ◽  
A.V. Mitrofanov ◽  
Vladimir I. Babitsky ◽  
Vadim V. Silberschmidt

Ultrasonically assisted turning (UAT) is a novel material-processing technology, where high frequency vibration (frequency f ≈ 20kHz, amplitude a ≈15μm) is superimposed on the movement of the cutting tool. Advantages of UAT have been demonstrated for a broad spectrum of applications. Compared to conventional turning (CT), this technique allows significant improvements in processing intractable materials, such as high-strength aerospace alloys, composites and ceramics. Superimposed ultrasonic vibration yields a noticeable decrease in cutting forces, as well as a superior surface finish. A vibro-impact interaction between the tool and workpiece in UAT in the process of continuous chip formation leads to a dynamically changing stress distribution in the process zone as compared to the quasistatic one in CT. The paper presents a three-dimensional, fully thermomechanically coupled computational model of UAT incorporating a non-linear elasto-plastic material model with strain-rate sensitivity and contact interaction with friction at the chip–tool interface. 3D stress distributions in the cutting region are analysed for a representative cycle of ultrasonic vibration. The dependence of various process parameters, such as shear stresses and cutting forces on vibration frequency and amplitude is also studied.


1999 ◽  
Author(s):  
M. K. Alam ◽  
K. K. Wong ◽  
S. L. Semiatin

Abstract The vacuum arc remelting (VAR) process has been developed to melt and cast high quality aerospace materials such as titanium alloys. VAR comprises the continuous remelting of a consumable electrode by means of a dc arc under vacuum or a low partial pressure of argon. The molten metal solidifies in a water-cooled copper crucible leading to high cooling rates that often results in large thermal stresses. The development of temperature gradients and the resulting thermal stresses during the VAR processes was investigated using an elasto-plastic material model with temperature dependent thermomechanical properties. Detailed solutions were obtained by using the commercial finite element code ABAQUS.


Author(s):  
X. Gary Tan ◽  
Amit Bagchi

Abstract Combat helmets have gone through many changes, from shells made of metal to advanced composites using Kevlar and Dyneema, along with introduction of pad suspensions to provide comfort and protection. Helmets have been designed to perform against ballistic and blunt impact threats. But, in today’s warfare, combat helmets are expected to protect against all three threats, blunt, ballistic impacts and blast effects to minimize traumatic brain injury (TBI) and provide a better thermal comfort. We are developing a helmet system analysis methodology integrating the effect of multiple threats, i.e., blast and blunt impacts, to achieve an optimal helmet system design, by utilizing multi-physics computational tools. We used a validated human head model to represent the warfighter’s head. The helmet composite shell was represented by an orthotropic elasto-plastic material model. A strain rate dependent model was employed for pad suspension material. Available dynamic loading data was used to calibrate the material parameters. Multiple helmet system configurations subjected to blast and blunt loadings were considered to quantify their influence on brain biomechanical response. Parametric studies were carried out to assess energy absorption for different suspension geometry and material morphology for different loadings. The resulting brain responses were used with published injury criteria to characterize the helmet system performance through a single metric for each threat type. Approaches to combine single-threat metrics to allow aggregating performance against multiple threats were discussed.


2018 ◽  
Vol 157 ◽  
pp. 02038
Author(s):  
Peter Pecháč ◽  
Milan Sága

This paper presents numerical simulation of blanking process for cold-rolled steel sheet metal. The problem was modeled using axial symmetry in commercial finite element software ADINA. Data obtained by experimental measurement were used to create multi-linear plastic material model for simulation. History of blanking force vs. tool displacement was obtained.


2017 ◽  
Vol 57 (1) ◽  
pp. 58-70 ◽  
Author(s):  
Jan Veselý

This paper describes a theoretical background, implementation and validation of the newly developed Jardine plastic hardening-softening model (JPHS model), which can be used for numerical modelling of the soils behaviour. Although the JPHS model is based on the elasto-plastic theory, like the Mohr-Coulomb model that is widely used in geotechnics, it contains some improvements, which removes the main disadvantages of the MC model. The presented model is coupled with an isotopically hardening and softening law, non-linear elastic stress-strain law, non-associated elasto-plastic material description and a cap yield surface. The validation of the model is done by comparing the numerical results with real measured data from the laboratory tests and by testing of the model on the real project of the tunnel excavation. The 3D numerical analysis is performed and the comparison between the JPHS, Mohr-Coulomb, Modified Cam-Clay, Hardening small strain model and monitoring in-situ data is done.


2001 ◽  
Vol 36 (4) ◽  
pp. 373-390 ◽  
Author(s):  
S. J Hardy ◽  
M. K Pipelzadeh ◽  
A. R Gowhari-Anaraki

This paper discusses the behaviour of hollow tubes with axisymmetric internal projections subjected to combined axial and internal pressure loading. Predictions from an extensive elastic and elastic-plastic finite element analysis are presented for a typical geometry and a range of loading combinations, using a simplified bilinear elastic-perfectly plastic material model. The axial loading case, previously analysed, is extended to cover the additional effect of internal pressure. All the predicted stress and strain data are found to depend on the applied loading conditions. The results are normalized with respect to material properties and can therefore be applied to geometrically similar components made from other materials, which can be represented by the same material models.


Author(s):  
Moustafa El-Gindy ◽  
Ryan Lescoe ◽  
Fredrik O¨ijer ◽  
Inge Johansson ◽  
Mukesh Trivedi

In recent years, the advancement of computerized modeling has allowed for the creation of extensive pneumatic tire models. These models have been used to determine many tire properties and tire-road interaction parameters which are either prohibitively expensive or unavailable with physical models. More recently, computerized modeling has been used to explore tire-soil interactions. The new parameters created by these interactions were defined for these models, but accurate soil constitutive equations were lacking. With the previous models, the soil was simulated using Finite Element Analysis (FEA). However, the meshless modeling method of Smooth Particle Hydrodynamics (SPH) may be a viable approach to more accurately simulating large soil deformations and complex tire-soil interactions. With both the FEA and SPH soils modeled as elastic-plastic solids, simplified soil tests are conducted. First, pressure-sinkage tests are used to explore the differences in the two soil-modeling methods. From these tests, it is found that the FEA model supports a surface pressure via the tensile forces created by the stretching of the surface elements. Conversely, for the SPH model, the surface pressure is supported via the compressive forces created by the compacting of particles. Next, shear-displacement tests are conducted with the SPH soil (as this test cannot easily be performed with an FEA soil model). These shear tests show that the SPH soil behaves more like clay in initial shearing and more like sand by exhibiting increased shearing due to vertical loading. While both the pressure-sinkage and shear-displacement tests still show that a larger particle density is unnecessary for SPH soil modeling, the shear-displacement tests indicate that an elastic-plastic material model may not be the best choice.


2021 ◽  
Vol 1032 ◽  
pp. 135-140
Author(s):  
Shao Feng Wu ◽  
Xiang Sheng Gao ◽  
Xian Rang Zhang ◽  
Han Jun Gao

Vibration stress relief (VSR) and thermal stress relief (TSR) are important method to eliminate the residual stress of structural parts. The thermal vibratory stress relief (TVSR) is a new method to decrease and homogenize the residual stress. Based on the stress relaxation tests and the equivalent vibration equation of modal analysis, the creep constitutive model and the bilinear isotropic hardening plasticity material model (BISO) are combined to establish the numerical simulation model of TVSR of 7075 aluminum alloy ring part. The simulation results show that four different initial blank residual stress levels are obtained after quenching process, and the residual stress elimination and homogenization effect of TSR and TVSR is better than that of VSR. TVSR has a better effect on both residual stress elimination and homogenization, and the residual stress relief rate can reach more than 20%.


Sign in / Sign up

Export Citation Format

Share Document