scholarly journals Ecotypic and genotypic effects on regrowth and heading date in switchgrass (Panicum virgatum )

Plant Direct ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. e00111 ◽  
Author(s):  
Qingzhen Jiang ◽  
Stephen L. Webb ◽  
Hem S. Bhandari ◽  
Joe H. Bouton ◽  
Malay C. Saha
Author(s):  
Hussein M. Khaeim ◽  
Anthony Clark ◽  
Tom Pearson ◽  
Dr. David Van Sanford

Head scab is historically a devastating disease affecting not just all classes of wheat but also barley and other small grains around the world. Fusarium head blight (FHB), or head scab, is caused most often by Fusarium graminearum (Schwabe), (sexual stage – Gibberella zeae) although several Fusarium spp. can cause the disease. This study was conducted to determine the effect of mass selection for FHB resistance using an image-based optical sorter. lines were derived from the C0 and C2 of two populations to compare genetic variation within populations with and without sorter selection. Our overall hypothesis is that sorting grain results in improved Fusarium head blight resistance. Both of the used wheat derived line populations have genetic variation, and population 1 has more than population 17. They are significantly different from each other for fusarium damged kernel (FDK), deoxynivalenol (DON), and other FHB traits. Although both populations are suitable to be grown for bulks, population 1 seems better since it has more genetic variation as well as lower FDK and DON, and earlier heading date. Lines within each population were significantly different and some lines in each population had significantly lower FDK and DON after selection using an optical sorter. Some lines had significant reduction in both FDK and DON, and some others had either FDK or DON reduction. Lines of population 1 that had significant reduction, were more numerous than in population 17, and FDK and DON reduction were greater.


2011 ◽  
Vol 37 (9) ◽  
pp. 1525-1532 ◽  
Author(s):  
Yue FENG ◽  
Rong-Rong ZHAI ◽  
Li-Yong CAO ◽  
Ze-Chuan LIN ◽  
Xing-Hua WEI ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 450e-451
Author(s):  
Virginia A. Gaynor ◽  
Mary Hockenberry Meyer

There is great interest in prairie gardens and prairie restorations in the central United States. Small prairie gardens are often established with plugs, but most restorationists and landscape contractors use seed for large plantings. If initial establishment is poor, restorations are often interseeded the second or third season. However, to evaluate early establishment and determine if interseeding is necessary, contractors must be able to identify native grasses in the seedling and juvenile stages. In this study we investigated vegetative characteristics of native prairie grass seedlings. Seven species of native prairie grass were grown in the greenhouse: Andropogon gerardii (big bluestem), Sorghastrum nutans (Indian grass), Panicum virgatum (switch grass), Schizachyrium scoparium (little bluestem), Bouteloua curtipendula (sideoats grama), Elymus canadensis (Canada wildrye), and Bromus kalmii (Kalmís brome). Every 2 to 3 weeks after germination, seedlings were photographed, pressed, and mounted. Additional photographs were taken through the dissecting scope at key stages of development. Ligules and auricles were found to be useful in distinguishing species, and our close-up photographs highlight these structures. Hairiness and color were variable within a species and could not be used reliably in identification. A seedling identification key will be presented for the species studied.


2007 ◽  
Vol 98 (16) ◽  
pp. 2985-2992 ◽  
Author(s):  
Gautam Sarath ◽  
Lisa M. Baird ◽  
Kenneth P. Vogel ◽  
Robert B. Mitchell

2001 ◽  
Vol 50 (6) ◽  
pp. 807-807 ◽  
Author(s):  
J. V. Etheridge ◽  
L. Davey ◽  
D. G. Christian

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 604
Author(s):  
Paolo Vitale ◽  
Fabio Fania ◽  
Salvatore Esposito ◽  
Ivano Pecorella ◽  
Nicola Pecchioni ◽  
...  

Traits such as plant height (PH), juvenile growth habit (GH), heading date (HD), and tiller number are important for both increasing yield potential and improving crop adaptation to climate change. In the present study, these traits were investigated by using the same bi-parental population at early (F2 and F2-derived F3 families) and late (F6 and F7, recombinant inbred lines, RILs) generations to detect quantitative trait loci (QTLs) and search for candidate genes. A total of 176 and 178 lines were genotyped by the wheat Illumina 25K Infinium SNP array. The two genetic maps spanned 2486.97 cM and 3732.84 cM in length, for the F2 and RILs, respectively. QTLs explaining the highest phenotypic variation were found on chromosomes 2B, 2D, 5A, and 7D for HD and GH, whereas those for PH were found on chromosomes 4B and 4D. Several QTL detected in the early generations (i.e., PH and tiller number) were not detected in the late generations as they were due to dominance effects. Some of the identified QTLs co-mapped to well-known adaptive genes (i.e., Ppd-1, Vrn-1, and Rht-1). Other putative candidate genes were identified for each trait, of which PINE1 and PIF4 may be considered new for GH and TTN in wheat. The use of a large F2 mapping population combined with NGS-based genotyping techniques could improve map resolution and allow closer QTL tagging.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Min Fan ◽  
Fang Miao ◽  
Haiyan Jia ◽  
Genqiao Li ◽  
Carol Powers ◽  
...  

AbstractVernalization genes underlying dramatic differences in flowering time between spring wheat and winter wheat have been studied extensively, but little is known about genes that regulate subtler differences in flowering time among winter wheat cultivars, which account for approximately 75% of wheat grown worldwide. Here, we identify a gene encoding anO-linkedN-acetylglucosamine (O-GlcNAc) transferase (OGT) that differentiates heading date between winter wheat cultivars Duster and Billings. We clone thisTaOGT1gene from a quantitative trait locus (QTL) for heading date in a mapping population derived from these two bread wheat cultivars and analyzed in various environments. Transgenic complementation analysis shows that constitutive overexpression ofTaOGT1bfrom Billings accelerates the heading of transgenic Duster plants.TaOGT1 is able to transfer anO-GlcNAc group to wheat proteinTaGRP2. Our findings establish important roles forTaOGT1in winter wheat in adaptation to global warming in the future climate scenarios.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yuxin Yang ◽  
Xueying Zhang ◽  
Lifen Wu ◽  
Lichao Zhang ◽  
Guoxiang Liu ◽  
...  

Abstract Background Wheat is one of the most widely planted crops worldwide. The heading date is important for wheat environmental adaptability, as it not only controls flowering time but also determines the yield component in terms of grain number per spike. Results In this research, homozygous genotypes with early and late heading dates derived from backcrossed progeny were selected to conduct RNA-Seq analysis at the double ridge stage (W2.0) and androgynous primordium differentiation stage (W3.5) of the leaf and apical meristem, respectively. In total, 18,352 differentially expressed genes (DEGs) were identified, many of which are strongly associated with wheat heading date genes. Gene Ontology (GO) enrichment analysis revealed that carbohydrate metabolism, trehalose metabolic process, photosynthesis, and light reaction are closely related to the flowering time regulation pathway. Based on MapMan metabolic analysis, the DEGs are mainly involved in the light reaction, hormone signaling, lipid metabolism, secondary metabolism, and nucleotide synthesis. In addition, 1,225 DEGs were annotated to 45 transcription factor gene families, including LFY, SBP, and MADS-box transcription factors closely related to flowering time. Weighted gene co-expression network analysis (WGCNA) showed that 16, 336, 446, and 124 DEGs have biological connections with Vrn1-5 A, Vrn3-7B, Ppd-1D, and WSOC1, respectively. Furthermore, TraesCS2D02G181400 encodes a MADS-MIKC transcription factor and is co-expressed with Vrn1-5 A, which indicates that this gene may be related to flowering time. Conclusions RNA-Seq analysis provided transcriptome data for the wheat heading date at key flower development stages of double ridge (W2.0) and androgynous primordium differentiation (W3.5). Based on the DEGs identified, co-expression networks of key flowering time genes in Vrn1-5 A, Vrn3-7B, WSOC1, and Ppd-1D were established. Moreover, we discovered a potential candidate flowering time gene, TraesCS2D02G181400. Taken together, these results serve as a foundation for further study on the regulatory mechanism of the wheat heading date.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bahman Khahani ◽  
Elahe Tavakol ◽  
Vahid Shariati ◽  
Laura Rossini

AbstractMeta-QTL (MQTL) analysis is a robust approach for genetic dissection of complex quantitative traits. Rice varieties adapted to non-flooded cultivation are highly desirable in breeding programs due to the water deficit global problem. In order to identify stable QTLs for major agronomic traits under water deficit conditions, we performed a comprehensive MQTL analysis on 563 QTLs from 67 rice populations published from 2001 to 2019. Yield and yield-related traits including grain weight, heading date, plant height, tiller number as well as root architecture-related traits including root dry weight, root length, root number, root thickness, the ratio of deep rooting and plant water content under water deficit condition were investigated. A total of 61 stable MQTLs over different genetic backgrounds and environments were identified. The average confidence interval of MQTLs was considerably refined compared to the initial QTLs, resulted in the identification of some well-known functionally characterized genes and several putative novel CGs for investigated traits. Ortho-MQTL mining based on genomic collinearity between rice and maize allowed identification of five ortho-MQTLs between these two cereals. The results can help breeders to improve yield under water deficit conditions.


Sign in / Sign up

Export Citation Format

Share Document