Synthesis and properties of new aromatic polysquaramide by solid-state thermal polycondensation of salt monomer composed of squaric acid and bis(4-aminophenyl) ether

2002 ◽  
Vol 40 (15) ◽  
pp. 2648-2655 ◽  
Author(s):  
Yoshio Imai ◽  
Motohito Shiratori ◽  
Tatsuo Inoue ◽  
Masa-aki Kakimoto
1993 ◽  
Vol 71 (4) ◽  
pp. 494-505 ◽  
Author(s):  
Kock-Yee Law ◽  
F. Court Bailey

A new approach to 1-(p-dimethylaminophenyl)-2-hydroxycyclobutene-3,4-dione (4), a precursor for the synthesis of symmetrical and unsymmetrical photoconductive squaraines, is described. In situ generation of p-nitrophenyl ketene, by the reaction of p-nitrophenylacetyl chloride and triethylamine in the presence of tetraethoxyethylene in anhydrous ether, results in a (2 + 2) cycloaddition between the ketene and the electron-rich olefin. The cycloadduct generated, 6, was hydrolyzed to give 1-(p-nitrophenyl)-2-hydroxycyclobutene-3,4-dione (5) in 51% yield. Reductive alkylation of 5 by hydrogen in the presence of formaldehyde in DMF at 50–60 °C affords 4 in 81% yield. The overall yield of 4 is 41% from tetraethoxyethylene and is significantly better than other preparative procedures of 4 based on a partial Friedel–Crafts reaction or an arylation reaction of a squaric acid derivative with an aniline, where yields ranging from 8.5% to 24% were reported. Condensations of 4 with 2 equivalents of N,N-dimethylaniline and its derivatives in refluxing 2-propanol in the presence of 6 equivalents of tributyl orthoformate yield symmetrical squaraine 1a and unsymmetrical squaraines 1b–1e. The synthesis is accomplished by a (2 + 2) cycloaddition – reductive alkylation – condensation reaction sequence and represents a new, cost-effective synthesis for photoconductive squaraines where the expensive squaric acid reactant is bypassed. The spectroscopic and the solid state properties of 1a–1e have been studied. Results show that the properties exhibited by 1a–1e are essentially identical to those exhibited by other photoconductive, symmetrical squaraines that are synthesized by other known processes. From the resemblance in solid state properties, 1a–1e are expected to be photoconductive. This has indeed been observed in preliminary experiments.


2014 ◽  
Vol 14 (5) ◽  
pp. 2578-2587 ◽  
Author(s):  
Rafel Prohens ◽  
Anna Portell ◽  
Mercè Font-Bardia ◽  
Antonio Bauzá ◽  
Antonio Frontera

2019 ◽  
Vol 74 (3) ◽  
pp. 241-254 ◽  
Author(s):  
Herbert Meier

AbstractSquaraines, two-fold condensation products in 1,3-position of squaric acid, represent dyes or pigments of high actuality. After their first boom in electrophotography diverse applications are presently studied in a wide area of research, which reaches from electrooptical materials to biosensors and compounds used in photodynamic therapy. Absorption and/or emission ranges in the NIR are mandatory for many of these techniques. The present article deals with stilbenoid squaraines, which feature an extended conjugation in their biradicaloid D-π-A-π-D structure. Due to the charge-transfer character of the excitation, boundaries are set for the optimal length of the conjugation. The absorption maxima of the stilbenoid squaraines and their aggregates are lying in chloroform as a solvent between 600 and 1000 nm. In the solid state panchromatic absorptions can be observed, which reach far into the NIR region. The facile preparation of squaraines bearing stilbene building blocks in one or two of their arms and moreover the easy access to dyes with multiple squaraine units fixed to stilbenoid scaffolds promise a wide palette of further applications in materials science.


2006 ◽  
Vol 4 (4) ◽  
pp. 695-707
Author(s):  
Sonya Zareva

Abstract2-[(2-Ethoxy-3,4-dioxocyclobut-1-en-yl)amino]propanamide (N-alaninamidoamide of squaric acid ethyl ester) has been characterized structurally and spectroscopically by ab initio calculations and IR-LD spectroscopy of oriented crystals suspended in a nematic liquid crystal. The results are compared with single crystal X-ray structures illustrating the possibilities of this experimental approach to obtaining structural information as well as assigning IR bands.


Author(s):  
T. J. Magee ◽  
J. Peng ◽  
J. Bean

Cadmium telluride has become increasingly important in a number of technological applications, particularly in the area of laser-optical components and solid state devices, Microstructural characterizations of the material have in the past been somewhat limited because of the lack of suitable sample preparation and thinning techniques. Utilizing a modified jet thinning apparatus and a potassium dichromate-sulfuric acid thinning solution, a procedure has now been developed for obtaining thin contamination-free samples for TEM examination.


Author(s):  
Kenneth M. Richter ◽  
John A. Schilling

The structural unit of solid state collagen complexes has been reported by Porter and Vanamee via EM and by Cowan, North and Randall via x-ray diffraction to be an ellipsoidal unit of 210-270 A. length by 50-100 A. diameter. It subsequently was independently demonstrated by us in dog tendon, dermis, and induced complexes. Its detailed morphologic, dimensional and molecular weight (MW) aspects have now been determined. It is pear-shaped in long profile with m diameters of 57 and 108 A. and m length of 263 A. (Fig. 1, tendon, KMnO4 fixation, Na-tungstate; Fig. 2a, schematic of unit in long, C, and x-sectional profiles of its thin, xB, and bulbous, xA portions; Fig. 2b, tendon essentially unmodified by ether and 0.4 N NaOH treatment, Na-tungstate). The unit consists of a uniquely coild cable, c, of ṁ 22.9 A. diameter and length of 2580-3316 A. The cable consists of three 2nd-strands, s, each of m 10.6 A.


Author(s):  
Linda C. Sawyer

Recent liquid crystalline polymer (LCP) research has sought to define structure-property relationships of these complex new materials. The two major types of LCPs, thermotropic and lyotropic LCPs, both exhibit effects of process history on the microstructure frozen into the solid state. The high mechanical anisotropy of the molecules favors formation of complex structures. Microscopy has been used to develop an understanding of these microstructures and to describe them in a fundamental structural model. Preparation methods used include microtomy, etching, fracture and sonication for study by optical and electron microscopy techniques, which have been described for polymers. The model accounts for the macrostructures and microstructures observed in highly oriented fibers and films.Rod-like liquid crystalline polymers produce oriented materials because they have extended chain structures in the solid state. These polymers have found application as high modulus fibers and films with unique properties due to the formation of ordered solutions (lyotropic) or melts (thermotropic) which transform easily into highly oriented, extended chain structures in the solid state.


Author(s):  
L. A. Bendersky ◽  
W. J. Boettinger

Rapid solidification produces a wide variety of sub-micron scale microstructure. Generally, the microstructure depends on the imposed melt undercooling and heat extraction rate. The microstructure can vary strongly not only due to processing parameters changes but also during the process itself, as a result of recalescence. Hence, careful examination of different locations in rapidly solidified products should be performed. Additionally, post-solidification solid-state reactions can alter the microstructure.The objective of the present work is to demonstrate the strong microstructural changes in different regions of melt-spun ribbon for three different alloys. The locations of the analyzed structures were near the wheel side (W) and near the center (C) of the ribbons. The TEM specimens were prepared by selective electropolishing or ion milling.


Author(s):  
Shaul Barkan

Cooling down solid state detecors, with other different way then liquid Nitrogen, is a goal of many vendors and customers since the invention of these detectors. THe disadvantage of the common way of liquid Nitrogen is first the inavailibility of the LN in many uses (like space military and any other applications that are not done inside a well organize Laboratory). The use of LN also considers as a Labor consumer in addition to the big dewar that has to be added to any detector for storing the LN, the boiling of the LN, may cause microphonics problesm and the refiling of the dewar in many Labs is a complicated process due to inconvenience location of the microscope.In this paper I will show a spectra result of 10mm2 SiLi detector for microanalysis use, cooled by peltier cooler. The peltier cooler has the advantage of non-microphonics and non-labor needed (like adding LN to the dewar).


Sign in / Sign up

Export Citation Format

Share Document