Photoresponsive poly(methyl methacrylate)-b -azodendron block copolymers prepared by ATRP and click chemistry

2010 ◽  
Vol 48 (7) ◽  
pp. 1538-1550 ◽  
Author(s):  
Jesús del Barrio ◽  
Luis Oriol ◽  
Rafael Alcalá ◽  
Carlos Sánchez
2018 ◽  
Vol 18 (3) ◽  
pp. 537 ◽  
Author(s):  
Melahat Göktaş ◽  
Guodong Deng

Poly(methyl methacrylate)-b-poly(N-isopropylacrylamide) [PMMA-b-PNIPAM] block copolymers were obtained by a combination of redox polymerization and atom transfer radical polymerization (ATRP) methods in two steps. For this purpose, PMMA macroinitator (ATRP-macroinitiator) was synthesized by redox polymerization of methyl methacrylate and 3-bromo-1-propanol using Ce(NH4)2(NO3)6 as a catalyst. The synthesis of PMMA-b-PNIPAM block copolymers was carried out by means of ATRP of ATRP-macroinitiator and NIPAM at 60 °C. The block copolymers were obtained in high yield and high molecular weight. The characterization of products was accomplished by using multi instruments and methods such as nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, gel permeation chromatography, and thermogravimetric analysis.


e-Polymers ◽  
2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Harald Pasch ◽  
Kibret Mequanint ◽  
Adrian Jörg

AbstractPoly(styrene-block-methyl methacrylate)s were fully analyzed by liquid chromatography at the critical point of adsorption (LC-CC) and two-dimensional chromatography. Operating at chromatographic conditions corresponding to the critical points of the homopolymers polystyrene and poly(methyl methacrylate), the block lengths distributions for the different blocks of the block copolymers were determined quantitatively. Information on the amounts and molar mass distributions of homopolymers and coupling products that were identified in the samples as by-products was obtained by on-line coupled 2D chromatography. It was shown that a complete picture of the molecular heterogeneity of block copolymers can be obtained only when information from different chromatographic experiments is combined. Size exclusion chromatography alone is inappropriate for evaluating the molecular heterogeneity of such samples.


RSC Advances ◽  
2015 ◽  
Vol 5 (48) ◽  
pp. 38243-38247 ◽  
Author(s):  
Junzhe Song ◽  
Jinbao Xu ◽  
Stergios Pispas ◽  
Guangzhao Zhang

The combination of ROP and ATRP in a one-pot process with DBU as ATRP ligand and ROP catalyst results in the synthesis of poly(l-lactide)-b-poly(methyl methacrylate) block copolymers.


2015 ◽  
Vol 30 (5) ◽  
pp. 691-706 ◽  
Author(s):  
Xinghua Guan ◽  
Xiaoyan Ma ◽  
Hualong Zhou ◽  
Fang Chen ◽  
Zhiguang Li

Two diblock copolymers of poly(methyl methacrylate)- block-poly(styrene) with chlorine as terminal group (PMMA- b-PS-Cl) were synthesized via two-step atom transfer radical polymerization. The structures of the block copolymers were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and gel permeation chromatography. Thermal properties including glass transition temperature ( Tg) and thermal stability were studied by differential scanning calorimetry and thermogravimetric analysis (TGA), respectively. The block copolymers of PMMA- b-PS-Cl exhibited two glass transitions, which were attributed to the Tgs of PMMA and PS segments, respectively. According to TGA, thermal decompositions of PMMA macro-initiator and PMMA- b-PS-Cl block copolymers had two stages. The weight loss ratio in the second stage was more significant than that in the first stage, which may be attributed to the separation of the halogen atom from the terminal group and the formation of a double bond. The breaking down of the backbone dominates in the second stage in which the weight loss ratio was more than 70%, represented the main stage of pyrolysis. It was found that the introduction of the PS chain remarkably enhanced the thermal stability of the copolymer, thus endowing the block copolymers high activation energy for thermal decomposition. On the other hand, the remaining two pyrolysis procedures further indicated that thermodynamic mechanism didn’t change due to the introduction of PS segments.


2011 ◽  
Vol 32 (6) ◽  
pp. 869-881 ◽  
Author(s):  
Şaziye Uğur ◽  
Önder Yargı ◽  
Yasemin Yüksel Durmaz ◽  
Bünyamin Karagöz ◽  
Niyazi Bıçak ◽  
...  

e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhengji Song ◽  
Carole Pelletier ◽  
Yinghua Qi ◽  
Jasim Ahmed ◽  
Sunil K. Varshney ◽  
...  

AbstractABA and/or ABC type triblock copolymers were synthesized by living anionic and controlled radical polymerization in which poly(methyl methacrylate) was used as central block. The structural composition of these block copolymers were determined by 1H NMR. The block length/molecular weight and microstructure of these polymers were measured by SEC. The microstructure of resultant central alkyl methacrylate block can be tailored from highly syndiotactic to highly isotactic structure by varying the solvent and/or initiator. The thermal and rheological properties of center poly(methyl methacrylate) block and poly(styreneb- methyl methacrylate-b- styrene) tri block copolymers were studied in detail.


Sign in / Sign up

Export Citation Format

Share Document