scholarly journals Roll-to-Roll fabrication of large area functional organic materials

2012 ◽  
Vol 51 (1) ◽  
pp. 16-34 ◽  
Author(s):  
Roar R. Søndergaard ◽  
Markus Hösel ◽  
Frederik C. Krebs
Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 573
Author(s):  
Usama Tahir ◽  
Muhammad Ahmad Kamran ◽  
Myung Yung Jeong

Roll-to-roll ultraviolet (R2R-UV) imprinting is a low-cost and high-throughput method that includes the manufacturing of large-area functional films. However, the quality of the final product is obstructed by the bubble entrapment during the imprinting process. In this study, a multi-phase volume of fluid (VOF) numerical model was used to remove bubble entrapment during the R2R imprinting process, which covered all parameters. This new modified numerical model with open-channel boundary conditions was based on the single zone that contains the direct contact of UV resin with the imprinting mold during the filling process. In addition, this model simulated the UV resin filling into microcavities at the preceding and succeeding ends of the imprinting mold. Different patterns of imprinting mold were considered to enhance the fidelity of R2R-UV imprinting for the comprehensive analysis. The experimental results validated through numerical simulations revealed that the bubble entrapment can be controlled by varying various parameters such as speed of the imprinting system, viscosity, contact angles, and pattern shape. The proposed model may be useful for a continuous bubble-free R2R imprinting process in industrial applications that includes flexible displays and micro/nano-optics.


2013 ◽  
Vol 844 ◽  
pp. 158-161 ◽  
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
M. Mahadi Abdul Jamil

Recently low cost production is vital to produce printed electronics by roll to roll manufacturing printing process like a flexographic. Flexographic has a high speed technique which commonly used for printing onto large area flexible substrates. However, the minimum feature sizes achieved with roll to roll printing processes, such as flexographic is in the range of fifty microns. The main contribution of this limitation is photopolymer flexographic plate unable to be produced finer micron range due to film that made by Laser Ablation Mask (LAMs) technology not sufficiently robust and consequently at micron ranges line will not be formed on the printing plate. Hence, polydimethylsiloxane (PDMS) is used instead of photopolymer. Printing trial had been conducted and multiple solid lines successfully printed for below fifty microns line width with no interference between two adjacent lines of the printed images.


2021 ◽  
Vol 11 (20) ◽  
pp. 9571
Author(s):  
Ga Eul Kim ◽  
Hyuntae Kim ◽  
Kyoohee Woo ◽  
Yousung Kang ◽  
Seung-Hyun Lee ◽  
...  

We aimed to increase the processing area of the roll-to-roll (R2R) nanoimprint lithography (NIL) process for high productivity, using a long roller. It is common for a long roller to have bending deformation, geometric errors and misalignment. This causes the non-uniformity of contact pressure between the rollers, which leads to defects such as non-uniform patterning. The non-uniformity of the contact pressure of the conventional R2R NIL system was investigated through finite element (FE) analysis and experiments in the conventional system. To solve the problem, a new large-area R2R NIL uniform pressing system with five multi-backup rollers was proposed and manufactured instead of the conventional system. As a preliminary experiment, the possibility of uniform contact pressure was confirmed by using only the pressure at both ends and one backup roller in the center. A more even contact pressure was achieved by using all five backup rollers and applying an appropriate pushing force to each backup roller. Machine learning techniques were applied to find the optimal combination of the pushing forces. In the conventional pressing process, it was confirmed that pressure deviation of the contact area occurred at a level of 44%; when the improved system was applied, pressure deviation dropped to 5%.


MRS Advances ◽  
2019 ◽  
Vol 4 (24) ◽  
pp. 1367-1375 ◽  
Author(s):  
Dongxiang Wang ◽  
Jacqueline Hauptmann ◽  
Christian May

ABSTRACTLarge area lighting OLEDs manufactured in a Roll-to-Roll (R2R) fashion enable the well-longed production capability with considerably high throughput based on flexible substrates, hence largely reduced OLED manufacturing cost. This paper will outline the present status of R2R OLED fabrication on ultra-thin glass with the focus on transparent OLED devices and how to perform segmentation by printing of silver- and dielectric pastes. Ultra-thin glass (UTG) is laminated on a PET film to avoid fabrication interruptions when glass cracks occur during the Roll-to-Roll process. The R2R fabricated flexible OLEDs also show key-values comparable to conventional OLEDs fabricated on small rigid glass in lab-scale.


2005 ◽  
Vol 870 ◽  
Author(s):  
Subhendu Guha ◽  
Jeffrey Yang

AbstractLarge-area deposition of thin-film amorphous silicon alloy triple-junction solar cells on lightweight and flexible stainless steel substrate is described. The proprietary roll-to-roll operation enables continuous depositions of sophisticated multi-layer structures. The deposition methods include sputtering and plasma-enhanced chemical vapor depositions. Spectrumsplitting triple-junction solar cell design, manufacturing processes, and product applications are presented.


2020 ◽  
Vol 146 ◽  
pp. 1549-1559 ◽  
Author(s):  
Yasemin Demirhan ◽  
Hasan Koseoglu ◽  
Fulya Turkoglu ◽  
Zemzem Uyanik ◽  
Mehtap Ozdemir ◽  
...  

MRS Advances ◽  
2019 ◽  
Vol 4 (36) ◽  
pp. 2001-2007
Author(s):  
Enfang He ◽  
Hong Zhang ◽  
Yueyue Gao ◽  
Fengyun Guo ◽  
Shiyong Gao ◽  
...  

ABSTRACT:Two benzodifuran (BDF) polymers, PBDF-C and PBDF-S, with alkyl and alkylthio substituted thiophene side-chains and benzodithiophene-4,8-dione (BDD) as the acceptor were designed and synthesized. Their optical, electrochemical properties and photovoltaic performances were systematically investigated. The polymer solar cells (PSCs) with a device structure of ITO/PEDOT:PSS/polymer:PC71BM/Ca/Al were fabricated. The PBDF-C based device showed a power conversion efficiency (PCE) of 3.01% after adding 1 vol% 1,8-diodooctane (DIO) as the solvent additive, and PBDF-S gave an enhanced PCE of 3.48% without any post-treatments. The enhancements were from the higher open-circuit voltage (Voc) and fill factor (FF). The thermal- and solvent-treatment-free processing is more favourable for the large area roll-to-roll manufacturing or printing technology for PSCs.


RSC Advances ◽  
2017 ◽  
Vol 7 (13) ◽  
pp. 7540-7546 ◽  
Author(s):  
Byung-Yong Wang ◽  
Eung-Seok Lee ◽  
Dae-Soon Lim ◽  
Hyun Wook Kang ◽  
Young-Jei Oh

Continuous flexible transparent electrodes fabrication by using silver nanowire and slot die process.


1994 ◽  
Vol 336 ◽  
Author(s):  
X. Deng ◽  
M. Izu ◽  
K. L. Narasimhan ◽  
S. R. Ovshinsky

ABSTRACTWe report results of stability tests of 4 ft2 triple-junction a-Si alloy photovoltaic (PV) Modules. These Modules were produced in ECD's 2 Megawatt (MW) continuous, roll-to-roll PV Manufacturing line during the early stage of optimization. The stable module efficiency after 600 hours of 1 sun light soaking at approximately 50°C under load, is 8%. This is the highest stable efficiency for large area (≥4 ft2) a-Si alloy PV Modules Made in a production line.


Sign in / Sign up

Export Citation Format

Share Document