scholarly journals Improving rubber concrete strength and toughness by plasma‐induced end‐of‐life tire rubber surface modification

Author(s):  
Roberto Nisticò ◽  
Luca Lavagna ◽  
Elisa A. Boot ◽  
Pavlo Ivanchenko ◽  
Massimo Lorusso ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 225
Author(s):  
Andrea Petrella ◽  
Michele Notarnicola

Lightweight cement mortars containing end-of-life tire rubber (TR) as aggregate were prepared and characterized by rheological, thermal, mechanical, microstructural, and wetting tests. The mixtures were obtained after total replacement of the conventional sand aggregate with untreated TR with different grain sizes (0–2 mm and 2–4 mm) and distributions (25%, 32%, and 40% by weight). The mortars showed lower thermal conductivities (≈90%) with respect to the sand reference due to the differences in the conductivities of the two phases associated with the low density of the aggregates and, to a minor extent, to the lack of adhesion of tire to the cement paste (evidenced by microstructural detection). In this respect, a decrease of the thermal conductivities was observed with the increase of the TR weight percentage together with a decrease of fluidity of the fresh mixture and a decrease of the mechanical strengths. The addition of expanded perlite (P, 0–1 mm grain size) to the mixture allowed us to obtain mortars with an improvement of the mechanical strengths and negligible modification of the thermal properties. Moreover, in this case, a decrease of the thermal conductivities was observed with the increase of the P/TR dosage together with a decrease of fluidity and of the mechanical strengths. TR mortars showed discrete cracks after failure without separation of the two parts of the specimens, and similar results were observed in the case of the perlite/TR samples thanks to the rubber particles bridging the crack faces. The super-elastic properties of the specimens were also observed in the impact compression tests in which the best performances of the tire and P/TR composites were evidenced by a deep groove before complete failure. Moreover, these mortars showed very low water penetration through the surface and also through the bulk of the samples thanks to the hydrophobic nature of the end-of-life aggregate, which makes these environmentally sustainable materials suitable for indoor and outdoor elements.


2014 ◽  
Vol 941-944 ◽  
pp. 761-764
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

The cementitiousness between rubber particles and cement-based material could be raised because of the surface modification of rubber,thus enhance the mechanical property of crumb rubber concrete and improve the interface effect of rubber particles.We had researched the change regulation about the ratio of bending-compressive strength of the crumb rubber concrete modified by latex,the concrete with various quantity of rubber,under the condition dosage of latex is 0.5% of cement quality.The result of experimental prove that,compressive strength, splitting tensile and flexural strength could be enhanced because of latex injecting,and the ratio of bending-compressive strength could be enhanced at the same time.


2017 ◽  
Vol 3 (2) ◽  
pp. 105-110
Author(s):  
Mohammad Ebrahim Komaki ◽  
Amirreza Ghodrati Dolatshamloo ◽  
Mahdi Eslami ◽  
Sahar Heydari

Disposal of waste tire rubber has become one of the major environmental issues in each part the World. One of the possible solutions to dispose of scrap tire rubber is using them into concrete curbs. This paper presents a new method to ameliorate the rubber concrete using a particular rubber size and Nano Material. Initially six mix designs were performed to determine the optimized size and percentage of rubber according to compressive strength. Afterwards, the major concrete curbs were made with the optimum mix design. Three different samples were made to determine the effects of rubber and Nano. One of which was made without rubber and Nano, the other was made with rubber and the last with rubber and Nano. Experiments were carried out to determine the durability and strength of specimens according to ISIRI-12728.


2014 ◽  
Vol 941-944 ◽  
pp. 739-742
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Jian Peng Zhang

Through modification of the rubber surface, the adhesive ability of rubber particles and cement based materials has increased, thus improving the mechanical properties of rubber concrete. Dosage of styrene butadiene latex was studied under the condition of 5% cement quality, the change regularity of different amount of rubber latex rubber modified concrete compressive, splitting, flexural strength and other mechanical properties. The test results prove that the latex rubber mixing can improve compressive, splitting and flexural strength of concrete.


2014 ◽  
Vol 919-921 ◽  
pp. 1916-1919
Author(s):  
Wei Li ◽  
Zhen Huang ◽  
Xiao Chu Wang ◽  
Zi Sheng Zang

The cementitiousness between rubber particles and cement-based material could be raised because of the surface modification of rubber,thus enhance the mechanical property of crumb rubber concrete and improve the interface effect of rubber particles.We had researched the change regulation of the ratio between tensile strength and compressive strength of the Crumb Rubber Concrete Modified by latex,the concrete with various quantity of rubber,under the condition Dosage of latex is 0.5% of cement quality.The result of Experimental prove that,compressive strength, splitting tensile and flexural strength could be enhanced because of latex injecting,and the ratio between tensile strength and compressive strength could be enhanced at the same time.


2020 ◽  
Vol 4 (3) ◽  
pp. 103 ◽  
Author(s):  
Ali Fazli ◽  
Denis Rodrigue

Recycling and recovery of waste tires is a serious environmental problem since vulcanized rubbers require several years to degrade naturally and remain for long periods of time in the environment. This is associated to a complex three dimensional (3D) crosslinked structure and the presence of a high number of different additives inside a tire formulation. Most end-of-life tires are discarded as waste in landfills taking space or incinerated for energy recovery, especially for highly degraded rubber wastes. All these options are no longer acceptable for the environment and circular economy. However, a great deal of progress has been made on the sustainability of waste tires via recycling as this material has high potential being a source of valuable raw materials. Extensive researches were performed on using these end-of-life tires as fillers in civil engineering applications (concrete and asphalt), as well as blending with polymeric matrices (thermoplastics, thermosets or virgin rubber). Several grinding technologies, such as ambient, wet or cryogenic processes, are widely used for downsizing waste tires and converting them into ground tire rubber (GTR) with a larger specific surface area. Here, a focus is made on the use of GTR as a partial replacement in virgin rubber compounds. The paper also presents a review of the possible physical and chemical surface treatments to improve the GTR adhesion and interaction with different matrices, including rubber regeneration processes such as thermomechanical, microwave, ultrasonic and thermochemical producing regenerated tire rubber (RTR). This review also includes a detailed discussion on the effect of GTR/RTR particle size, concentration and crosslinking level on the curing, rheological, mechanical, aging, thermal, dynamic mechanical and swelling properties of rubber compounds. Finally, a conclusion on the current situation is provided with openings for future works.


2019 ◽  
Vol 229 ◽  
pp. 116901 ◽  
Author(s):  
El-Sayed Abd-Elaal ◽  
Sherif Araby ◽  
Julie E. Mills ◽  
Osama Youssf ◽  
Rajeev Roychand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document