Growth of high-quality AlN at high growth rate by high-temperature MOVPE

2006 ◽  
Vol 3 (6) ◽  
pp. 1617-1619 ◽  
Author(s):  
N. Fujimoto ◽  
T. Kitano ◽  
G. Narita ◽  
N. Okada ◽  
K. Balakrishnan ◽  
...  
2014 ◽  
Vol 778-780 ◽  
pp. 59-62 ◽  
Author(s):  
Isaho Kamata ◽  
Norihiro Hoshino ◽  
Yuichiro Tokuda ◽  
Emi Makino ◽  
Jun Kojima ◽  
...  

This paper reports on evidence of high-quality and very fast 4H-SiC crystal growth achieved using a high-temperature gas source method. The formation of threading screw dislocations (TSDs) during crystal growth was examined by comparing synchrotron X-ray topography images taken for a seed and grown crystals, while the generation of a high density of new TSDs is observed under improper growth condition. High-quality crystal growth retaining the TSD density of the seed crystal was accomplished under an improved condition, even for a very high growth rate of 2.1 mm/h.


2000 ◽  
Vol 9 (9-10) ◽  
pp. 1673-1677 ◽  
Author(s):  
H. Guo ◽  
Z.L. Sun ◽  
Q.Y. He ◽  
S.M. Du ◽  
X.B. Wu ◽  
...  

2019 ◽  
Vol 125 ◽  
pp. 343-347 ◽  
Author(s):  
Hualong Wu ◽  
Wei Zhao ◽  
Chenguang He ◽  
Kang Zhang ◽  
Longfei He ◽  
...  

Synthesiology ◽  
2016 ◽  
Vol 9 (3) ◽  
pp. 124-138 ◽  
Author(s):  
Masataka HASEGAWA ◽  
Kazuo TSUGAWA ◽  
Ryuichi KATO ◽  
Yoshinori KOGA ◽  
Masatou ISHIHARA ◽  
...  

2015 ◽  
Vol 821-823 ◽  
pp. 133-136 ◽  
Author(s):  
Takanori Tanaka ◽  
Naoyuki Kawabata ◽  
Yoichiro Mitani ◽  
Masashi Sakai ◽  
Nobuyuki Tomita ◽  
...  

The reduction of the growth pressure was demonstrated to have the same effect as the addition of chloride-containing gas on preventing the Si nucleation and the epitaxy with high growth rate (>50 μm/h) was achieved by using the decreasing pressure condition in a horizontal CVD reactor without chloride-containing gas. The quality of a 30-μm-thick epilayer grown with 40 μm/h was also investigated. Downfall and triangle defect density in the layer was as low as 0.16 /cm2, indicating that a high quality epitaxial wafer can be easily obtained under the condition with high throughput in the sinple CVD system.


1993 ◽  
Vol 312 ◽  
Author(s):  
Sarah R. Kurtz ◽  
J. M. Olson ◽  
D. J. Arent ◽  
A. E. Kibbler ◽  
K. A. Bertness

AbstractThe band gap of Ga0.5In0.5P is studied as a function of growth temperature, growth rate, and substrate misorientation. As each of these parameters is independently varied the band gap first decreases, then increases, resulting in “U” shaped curves. Each “U” shaped curve shifts if any other growth parameter is varied. The data presented here can be divided into two regions of parameter space. In the low temperature, low substrate misorientation, high growth rate region, the band gap is shown to decrease with increasing growth temperature, decreasing growth rate, and increasing substrate misorientation. In the high temperature, high substrate misorientation, low growth rate region, the opposite trends are observed. The implications of these data on the ordering mechanism are discussed.


Author(s):  
Dario Schiavon ◽  
Elżbieta Litwin-Staszewska ◽  
Rafał Jakieła ◽  
Szymon Grzanka ◽  
Piotr Perlin

The effect of growth temperature and precursor flows on the doping level and surface morphology of Ge-doped GaN layers was researched. The results show that germanium is more readily incorporated at low temperature, high growth rate and high V/III ratio, thus revealing a similar behavior to what was previously observed for indium. V-pit formation can be blocked at high temperature but also at low V/III ratio, the latter of which however causing step bunching.


2006 ◽  
Vol 501 (1-2) ◽  
pp. 338-340 ◽  
Author(s):  
Aad Gordijn ◽  
Jeroen Francke ◽  
Jatindra K. Rath ◽  
Ruud E.I. Schropp

2010 ◽  
Vol 443 ◽  
pp. 510-515 ◽  
Author(s):  
Hung Yin Tsai ◽  
Chih Cheng Chang ◽  
Chih Wei Wu

The development of homoepitaxial films for advanced device applications has been studied, but high growth rate and diamond film quality have not yet been explored. In the current study, high quality homoepitaxial diamond films were grown on type Ib (100) HPHT synthetic diamond substrate by hot-filament chemical vapor deposition. The reactant gases were mixed by CH4 and H2 with small amounts of N2 (500 to 3000 ppm). Besides, a bias system was used to assist diamond film deposition. The pyramidal crystals on diamond surface can be suppressed and high quality diamond film of FWHM (Full Width at Half Maximum) = 10.76 cm-1 with high growth rate of 8.78 ± 0.2 μm/ hr was obtained at the condition of adding 1000 ppm nitrogen. At the bias voltage of -150 V, the pyramidal crystals can also be suppressed and high quality diamond film of FWHM = 10.19 cm-1 was obtained. With nitrogen addition above 2000 ppm, diamond film was partly doped and some sp2 structures appeared. These homoepitaxial diamond films were characterized by optical microscopy and micro-Raman spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document