Dry Olive Leaf Extract in Combination with Methotrexate Reduces Cell Damage in Early Rheumatoid Arthritis Patients-A Pilot Study

2016 ◽  
Vol 30 (10) ◽  
pp. 1615-1623 ◽  
Author(s):  
Andrea Čabarkapa ◽  
Lada Živković ◽  
Sunčica Borozan ◽  
Mirjana Zlatković-Švenda ◽  
Dragana Dekanski ◽  
...  
Genetika ◽  
2020 ◽  
Vol 52 (1) ◽  
pp. 67-80
Author(s):  
Andrea Pirkovic-Cabarkapa ◽  
Lada Zivkovic ◽  
Mirjana Zlatkovic-Svenda ◽  
Suncica Borozan ◽  
Dijana Topalovic ◽  
...  

Oxidative stress and inflammation are DNA instability factors for rheumatoid arthritis (RA) patients. The aims of this study were to evaluate cytogenetic alterations in Peripheral Blood Lymphocytes (PBL) in two groups of RA patients: the early and the long-term RA group; and to examine potential of concomitant treatment with Methotrexate (MTX) and Dry olive leaf extract (DOLE) against cytogenetic damage in RA patients after a 3-weeks treatment. A total of 32 RA patients and 10healthy individuals were included. RA patients were equally divided into four groups: two groups with early phase RA (one treated with MTX alone, the other in combination with DOLE); and two long-term phase RA groups (group with active disease and group with low disease activity)-both treated with MTX and DOLE combination. PBL cultures were screened for chromosome aberrations and micronuclei frequencies. Significantly increased frequencies of micronuclei were shown in active phase RA disease (both early and long-term) but not in the group with low disease activity, as compared to controls. Chromosome aberrations were detected for all 4 RA groups. The highest frequencies of micronuclei and chromosome aberrations were found in the long-termactive RA group. After 3 weeks-treatment, there were no significant decrease of the micronuclei frequencies compared to baseline, although they were reduced in all RA groups, except for the group with the long-term active disease. High level of cytogenetic damage in RA patients was concordant with duration and activity of the RA disease. At 3 weeks of therapy, neither the combined treatment (MTX+DOLE), nor MTX alone did not affect the frequency of micronuclei formation.


2020 ◽  
Vol 19 (7) ◽  
pp. 1662-1666
Author(s):  
Rungsima Wanitphakdeedecha ◽  
Janice Natasha C. Ng ◽  
Natchaya Junsuwan ◽  
Sutasinee Phaitoonwattanakij ◽  
Weeranut Phothong ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshio Mikami ◽  
Jimmy Kim ◽  
Jonghyuk Park ◽  
Hyowon Lee ◽  
Pongson Yaicharoen ◽  
...  

AbstractObesity is a risk factor for development of metabolic diseases and cognitive decline; therefore, obesity prevention is of paramount importance. Neuronal mitochondrial dysfunction induced by oxidative stress is an important mechanism underlying cognitive decline. Olive leaf extract contains large amounts of oleanolic acid, a transmembrane G protein-coupled receptor 5 (TGR5) agonist, and oleuropein, an antioxidant. Activation of TGR5 results in enhanced mitochondrial biogenesis, which suggests that olive leaf extract may help prevent cognitive decline through its mitochondrial and antioxidant effects. Therefore, we investigated olive leaf extract’s effects on obesity, cognitive decline, depression, and endurance exercise capacity in a mouse model. In physically inactive mice fed a high-fat diet, olive leaf extract administration suppressed increases in fat mass and body weight and prevented cognitive declines, specifically decreased working memory and depressive behaviors. Additionally, olive leaf extract increased endurance exercise capacity under atmospheric and hypoxic conditions. Our study suggests that these promising effects may be related to oleanolic acid’s improvement of mitochondrial function and oleuropein’s increase of antioxidant capacity.


2021 ◽  
Vol 134 ◽  
pp. 111139
Author(s):  
Reyes Benot-Dominguez ◽  
Maria Grazia Tupone ◽  
Vanessa Castelli ◽  
Michele d’Angelo ◽  
Elisabetta Benedetti ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Shen ◽  
Su Jin Song ◽  
Narae Keum ◽  
Taesun Park

The present study aimed to investigate whether olive leaf extract (OLE) prevents high-fat diet (HFD)-induced obesity in mice and to explore the underlying mechanisms. Mice were randomly divided into groups that received a chow diet (CD), HFD, or 0.15% OLE-supplemented diet (OLD) for 8 weeks. OLD-fed mice showed significantly reduced body weight gain, visceral fat-pad weights, and plasma lipid levels as compared with HFD-fed mice. OLE significantly reversed the HFD-induced upregulation of WNT10b- and galanin-mediated signaling molecules and key adipogenic genes (PPARγ, C/EBPα, CD36, FAS, and leptin) in the epididymal adipose tissue of HFD-fed mice. Furthermore, the HFD-induced downregulation of thermogenic genes involved in uncoupled respiration (SIRT1, PGC1α, and UCP1) and mitochondrial biogenesis (TFAM, NRF-1, and COX2) was also significantly reversed by OLE. These results suggest that OLE exerts beneficial effects against obesity by regulating the expression of genes involved in adipogenesis and thermogenesis in the visceral adipose tissue of HFD-fed mice.


Sign in / Sign up

Export Citation Format

Share Document