Trends in low flows of German rivers since 1950: Comparability of different low-flow indicators and their spatial patterns

2017 ◽  
Vol 33 (7) ◽  
pp. 1191-1204 ◽  
Author(s):  
H. Bormann ◽  
N. Pinter
Keyword(s):  
Low Flow ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 988
Author(s):  
Rogério Souza Aguiar ◽  
Edson José Paulino da Rocha ◽  
José Augusto de Souza Junior ◽  
Joyse Tatiane Souza dos Santos ◽  
Josiane Sarmento Dos Santos

As cheias e vazantes do rio Amazonas passaram a ser mais persistentes ao longo dos anos. Este estudo busca analisara influência da variabilidade temporal em escala de bacia hidrográfica sobre o regime do rio Amazonas, a partir das vazões da estação hidrológica da Agência Nacional de Águas – ANA, localizada em Óbidos, no Estado do Pará em uma série histórica de janeiro/1970 a dezembro/2013. Além do tempo, o estudo analisou a intensidade do El Niño e La Niña. Como esperado, o tempo influenciou na vazão média interanual encontrada de 98.723 m3/s para os 44 anos da série analisada. Porém com variabilidade anual do regime do rio Amazonas de intensas proporções temporais, com a vazão variando de ordem de 72.380 m3/s (como em 1997) no regime de vazante até uma ordem de 131.620 m3/s (como em 1974) no regime de cheia. Também foi identificado que fenômenos de El Niño e La Niña modularam eventos climáticos extremos sobre as vazões da Bacia Amazônica em cada ano. A análise interanual mostrou que os anos de baixas vazões, possuíam a característica de persistência de ocorrência em relação às altas vazões. A partir de 1989, houve um aumento em relação à amplitude média da vazão de 87.727 m3/s devido a fortes níveis mínimos registrados. Ao analisar a vazão normalizada percebeu-se que na maioria dos anos de baixa vazão foram também anos do fenômeno El Niño. Constatado esta persistência de baixas vazões, investigaram-se os fatores de armazenamento e disponibilidade do rio Amazonas.   Analysis of Hydrological Regime Componentof the Amazonas River Basin in Years of Climate Events. ABSTRACTThe floods and drains of the Amazon River have become more persistent over the years. This study seeks to analyze the influence of the temporal variability in the basin scale on the Amazon river regime, from the flows of the hydrological station of the National Water Agency - ANA, located in Óbidos, State of Pará, in a historical series from January/1970 to December /2013. Besides time, the study analyzed the intensity of El Niño and La Niña. As expected, time influenced the annual interannual flow rate of 98,723 m3/s for the 44 years of the analyzed series. However, with an annual variability of the Amazon river regime of intense flows, with an increase of 72,380 m3/s (as in 1997) in the effluent regime up to an order of 131,620 m3/s (as in 1974) in the flood regime. It was also identified that El Niño and La Niña phenomena modulated extreme climatic events on the Amazon Basin flows each year. The year-on-year analysis showed that the years of low flows had a persistence of occurrence in relation to high flows. As of 1989, there was an increase in relation to the average flow amplitude of 87,727 m3/s due to the strong minimum levels recorded. Analyzing the normalized flow rate, it was observed that in most of the years of low flow there were also years of the El Niño phenomenon. Considering this persistence of low flows, we investigated the storage and availability factors of the Amazon River.Keywords: Time flows. Ecological Maintenance.Amazonriver. 


2011 ◽  
Vol 15 (1) ◽  
pp. 11-20 ◽  
Author(s):  
S. G. Gebrehiwot ◽  
U. Ilstedt ◽  
A. I. Gärdenas ◽  
K. Bishop

Abstract. Thirty-two watersheds (31–4350 km2), in the Blue Nile Basin, Ethiopia, were hydrologically characterized with data from a study of water and land resources by the US Department of Interior, Bureau of Reclamation (USBR) published in 1964. The USBR document contains data on flow, topography, geology, soil type, and land use for the period 1959 to 1963. The aim of the study was to identify watershed variables best explaining the variation in the hydrological regime, with a special focus on low flows. Moreover, this study aimed to identify variables that may be susceptible to management policies for developing and securing water resources in dry periods. Principal Component Analysis (PCA) and Partial Least Square (PLS) were used to analyze the relationship between five hydrologic response variables (total flow, high flow, low flow, runoff coefficient, low flow index) and 30 potential explanatory watershed variables. The explanatory watershed variables were classified into three groups: land use, climate and topography as well as geology and soil type. Each of the three groups had almost equal influence on the variation in hydrologic variables (R2 values ranging from 0.3 to 0.4). Specific variables from within each of the three groups of explanatory variables were better in explaining the variation. Low flow and low flow index were positively correlated to land use types woodland, dense wet forest and savannah grassland, whereas grazing land and bush land were negatively correlated. We concluded that extra care for preserving low flow should be taken on tuffs/basalts which comprise 52% of the Blue Nile Basin. Land use management plans should recognize that woodland, dense wet forest and savannah grassland can promote higher low flows, while grazing land diminishes low flows.


2015 ◽  
Vol 42 (8) ◽  
pp. 503-509 ◽  
Author(s):  
Mike Hulley ◽  
Colin Clarke ◽  
Ed Watt

A methodology is developed for the estimation of annual low-flow quantiles for streams with annual low flows occurring in both the summer and winter. Since the low flow generating processes are different in summer and winter, independent seasonal analyses are required. The methodology provides recommendations for assessment of record length, randomness, homogeneity, independence and stationarity, as well as guidelines for distribution selection and fitting for seasonal distributions. The seasonal distributions are then used to develop the combined distribution for annual low flow estimation. Four worked examples of long-term Canadian hydrometric stations are provided.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 212 ◽  
Author(s):  
Zhipeng Xu ◽  
Wenfei Liu ◽  
Xiaohua Wei ◽  
Houbao Fan ◽  
Yizao Ge ◽  
...  

Fruit tree planting is a common practice for alleviating poverty and restoring degraded environment in developing countries. Yet, its environmental effects are rarely assessed. The Jiujushui watershed (261.4 km2), located in the subtropical Jiangxi Province of China, was selected to assess responses of several flow regime components on both reforestation and fruit tree planting. Three periods of forest changes, including a reference (1961 to 1985), reforestation (1986 to 2000) and fruit tree planting (2001 to 2016) were identified for assessment. Results suggest that the reforestation significantly decreased the average magnitude of high flow by 8.78%, and shortened high flow duration by 2.2 days compared with the reference. In contrast, fruit tree planting significantly increased the average magnitude of high flow by 27.43%. For low flows, reforestation significantly increased the average magnitude by 46.38%, and shortened low flow duration by 8.8 days, while the fruit tree planting had no significant impact on any flow regime components of low flows. We conclude that reforestation had positive impacts on high and low flows, while to our surprise, fruit tree planting had negative effects on high flows, suggesting that large areas of fruit tree planting may potentially become an important driver for some negative hydrological effects in our study area.


2011 ◽  
Vol 15 (3) ◽  
pp. 715-727 ◽  
Author(s):  
S. Castiglioni ◽  
A. Castellarin ◽  
A. Montanari ◽  
J. O. Skøien ◽  
G. Laaha ◽  
...  

Abstract. Recent studies highlight that spatial interpolation techniques of point data can be effectively applied to the problem of regionalization of hydrometric information. This study compares two innovative interpolation techniques for the prediction of low-flows in ungauged basins. The first one, named Physiographical-Space Based Interpolation (PSBI), performs the spatial interpolation of the desired streamflow index (e.g., annual streamflow, low-flow index, flood quantile, etc.) in the space of catchment descriptors. The second technique, named Topological kriging or Top-kriging, predicts the variable of interest along river networks taking both the area and nested nature of catchments into account. PSBI and Top-kriging are applied for the regionalization of Q355 (i.e., a low-flow index that indicates the streamflow that is equalled or exceeded 355 days in a year, on average) over a broad geographical region in central Italy, which contains 51 gauged catchments. The two techniques are cross-validated through a leave-one-out procedure at all available gauges and applied to a subregion to produce a continuous estimation of Q355 along the river network extracted from a 90m elevation model. The results of the study show that Top-kriging and PSBI present complementary features. Top-kriging outperforms PSBI at larger river branches while PSBI outperforms Top-kriging for headwater catchments. Overall, they have comparable performances (Nash-Sutcliffe efficiencies in cross-validation of 0.89 and 0.83, respectively). Both techniques provide plausible and accurate predictions of Q355 in ungauged basins and represent promising opportunities for regionalization of low-flows.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3575
Author(s):  
Vojtech Vlach ◽  
Ondrej Ledvinka ◽  
Milada Matouskova

In the context of the ongoing climate warming in Europe, the seasonality and magnitudes of low flows and streamflow droughts are expected to change in the future. Increasing temperature and evaporation rates, stagnating precipitation amounts and decreasing snow cover will probably further intensify the summer streamflow deficits. This study analyzed the long-term variability and seasonality of low flows and streamflow droughts in fifteen headwater catchments of three regions within Central Europe. To quantify the changes in the low flow regime of selected catchments during the 1968–2019 period, we applied the R package lfstat for computing the seasonality ratio (SR), the seasonality index (SI), mean annual minima, as well as for the detection of streamflow drought events along with deficit volumes. Trend analysis of summer minimum discharges was performed using the Mann–Kendall test. Our results showed a substantial increase in the proportion of summer low flows during the analyzed period, accompanied with an apparent shift in the average date of low flow occurrence towards the start of the year. The most pronounced seasonality shifts were found predominantly in catchments with the mean altitude 800–1000 m.a.s.l. in all study regions. In contrast, the regime of low flows in catchments with terrain above 1000 m.a.s.l. remained nearly stable throughout the 1968–2019 period. Moreover, the analysis of mean summer minimum discharges indicated a much-diversified pattern in behavior of long-term trends than it might have been expected. The findings of this study may help identify the potentially most vulnerable near-natural headwater catchments facing worsening summer water scarcity.


1985 ◽  
Vol 16 (2) ◽  
pp. 105-128 ◽  
Author(s):  
G. V. Loganathan ◽  
C. Y. Kuo ◽  
T. C. McCormick

The transformations (i) SMEMAX (ii) Modified SMEMAX (iii) Power and Probability Distributions (iv) Weibull (α,β,γ) or Extreme value type III (v) Weibull (α,β,0) (vi) Log Pearson Type III (vii) Log Boughton are considered for the low flow analysis. Also, different parameter estimating procedures are considered. Both the Weibull and log Pearson can have positive lower bounds and thus their use in fitting low flow probabilities may not be physically justifiable. A new derivation generalizing the SMEMAX transformation is proposed. A new estimator for the log Boughton distribution is presented. It is found that the Boughton distribution with Cunnane's plotting position provides a good fit to low flows for Virginia streams.


2019 ◽  
Vol 23 (1) ◽  
pp. 73-91 ◽  
Author(s):  
Theano Iliopoulou ◽  
Cristina Aguilar ◽  
Berit Arheimer ◽  
María Bermúdez ◽  
Nejc Bezak ◽  
...  

Abstract. The geophysical and hydrological processes governing river flow formation exhibit persistence at several timescales, which may manifest itself with the presence of positive seasonal correlation of streamflow at several different time lags. We investigate here how persistence propagates along subsequent seasons and affects low and high flows. We define the high-flow season (HFS) and the low-flow season (LFS) as the 3-month and the 1-month periods which usually exhibit the higher and lower river flows, respectively. A dataset of 224 rivers from six European countries spanning more than 50 years of daily flow data is exploited. We compute the lagged seasonal correlation between selected river flow signatures, in HFS and LFS, and the average river flow in the antecedent months. Signatures are peak and average river flow for HFS and LFS, respectively. We investigate the links between seasonal streamflow correlation and various physiographic catchment characteristics and hydro-climatic properties. We find persistence to be more intense for LFS signatures than HFS. To exploit the seasonal correlation in the frequency estimation of high and low flows, we fit a bi-variate meta-Gaussian probability distribution to the selected flow signatures and average flow in the antecedent months in order to condition the distribution of high and low flows in the HFS and LFS, respectively, upon river flow observations in the previous months. The benefit of the suggested methodology is demonstrated by updating the frequency distribution of high and low flows one season in advance in a real-world case. Our findings suggest that there is a traceable physical basis for river memory which, in turn, can be statistically assimilated into high- and low-flow frequency estimation to reduce uncertainty and improve predictions for technical purposes.


Sign in / Sign up

Export Citation Format

Share Document