Nonspecific Regulatory Mechanism of Contact Sensitivity: Nonspecific Suppressor Factor Suppresses the Antigen-Presenting Activity of Dendritic Cells to Induce Contact Sensitivity

1994 ◽  
Vol 158 (1) ◽  
pp. 228-240 ◽  
Author(s):  
Yumiko Nakano ◽  
Shinjiro Hori ◽  
Makoto Ihara
2001 ◽  
Vol 86 (11) ◽  
pp. 1257-1263 ◽  
Author(s):  
Attilio Bondanza ◽  
Angelo Manfredi ◽  
Valérie Zimmermann ◽  
Matteo Iannacone ◽  
Angela Tincani ◽  
...  

SummaryScavenger phagocytes are mostly responsible for the in vivo clearance of activated or senescent platelets. In contrast to other particulate substrates, the phagocytosis of platelets does not incite pro-inflammatory responses in vivo. This study assessed the contribution of macrophages and dendritic cells (DCs) to the clearance of activated platelets. Furthermore, we verified whether antibodies against the β2 Glycoprotein I (β2GPI), which bind to activated platelets, influence the phenomenon. DCs did not per se internalise activated platelets. In contrast, macrophages efficiently phagocytosed platelets. In agreement with the uneventful nature of the clearance of platelets in vivo, phagocytosing macrophages did not release IL-1β, TNF-α or IL-10. β2GPI bound to activated platelets and was required for their recognition by anti-ββ2GPI antibodies. DCs internalised platelets opsonised by anti-ββ2GPI antibodies. The phagocytosis of opsonised platelets determined the release of TNF-α and IL-1β by DCs and macrophages. Phagocytosing macrophages, but not DCs, secreted the antiinflammatory cytokine IL-1β0. We conclude that anti-ββ2GPI antibodies cause inflammation during platelet clearance and shuttle platelet antigens to antigen presenting DCs.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 583
Author(s):  
Ze-Jun Yang ◽  
Bo-Ya Wang ◽  
Tian-Tian Wang ◽  
Fei-Fei Wang ◽  
Yue-Xin Guo ◽  
...  

Dendritic cells (DCs), including conventional DCs (cDCs) and plasmacytoid DCs (pDCs), serve as the sentinel cells of the immune system and are responsible for presenting antigen information. Moreover, the role of DCs derived from monocytes (moDCs) in the development of inflammation has been emphasized. Several studies have shown that the function of DCs can be influenced by gut microbes including gut bacteria and viruses. Abnormal changes/reactions in intestinal DCs are potentially associated with diseases such as inflammatory bowel disease (IBD) and intestinal tumors, allowing DCs to be a new target for the treatment of these diseases. In this review, we summarized the physiological functions of DCs in the intestinal micro-environment, their regulatory relationship with intestinal microorganisms and their regulatory mechanism in intestinal diseases.


2019 ◽  
Vol 5 (1) ◽  
pp. eaav0216 ◽  
Author(s):  
Mohammad Arifuzzaman ◽  
Yuvon R. Mobley ◽  
Hae Woong Choi ◽  
Pradeep Bist ◽  
Cristina A. Salinas ◽  
...  

Mast cells (MCs) are strategically distributed at barrier sites and prestore various immunocyte-recruiting cytokines, making them ideal targets for selective activation to treat peripheral infections. Here, we report that topical treatment with mastoparan, a peptide MC activator (MCA), enhances clearance ofStaphylococcus aureusfrom infected mouse skins and accelerates healing of dermonecrotic lesions. Mastoparan functions by activating connective tissue MCs (CTMCs) via the MRGPRX2 (Mas-related G protein-coupled receptor member X2) receptor. Peripheral CTMC activation, in turn, enhances recruitment of bacteria-clearing neutrophils and wound-healing CD301b+dendritic cells. Consistent with MCs playing a master coordinating role, MC activation also augmented migration of various antigen-presenting dendritic cells to draining lymph nodes, leading to stronger protection against a second infection challenge. MCAs therefore orchestrate both the innate and adaptive immune arms, which could potentially be applied to combat peripheral infections by a broad range of pathogens.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2764-2771 ◽  
Author(s):  
Beth D. Harrison ◽  
Julie A. Adams ◽  
Mark Briggs ◽  
Michelle L. Brereton ◽  
John A. Liu Yin

Abstract Effective presentation of tumor antigens is fundamental to strategies aimed at enrolling the immune system in eradication of residual disease after conventional treatments. Myeloid malignancies provide a unique opportunity to derive dendritic cells (DCs), functioning antigen-presenting cells, from the malignant cells themselves. These may then co-express leukemic antigens together with appropriate secondary signals and be used to generate a specific, antileukemic immune response. In this study, blasts from 40 patients with acute myeloid leukemia (AML) were cultured with combinations of granulocyte-macrophage colony-stimulating factor, interleukin 4, and tumor necrosis factor α, and development to DCs was assessed. After culture, cells from 24 samples exhibited morphological and immunophenotypic features of DCs, including expression of major histocompatibility complex class II, CD1a, CD83, and CD86, and were potent stimulators in an allogeneic mixed lymphocyte reaction (MLR). Stimulation of autologous T-cell responses was assessed by the proliferative response of autologous T cells to the leukemic DCs and by demonstration of the induction of specific, autologous, antileukemic cytotoxicity. Of 17 samples, 11 were effective stimulators in the autologous MLR, and low, but consistent, autologous, antileukemic cytotoxicity was induced in 8 of 11 cases (mean, 27%; range, 17%-37%). This study indicates that cells with enhanced antigen-presenting ability can be generated from AML blasts, that these cells can effectively prime autologous cytotoxic T cells in vitro, and that they may be used as potential vaccines in the immunotherapy of AML.


Blood ◽  
2007 ◽  
Vol 110 (2) ◽  
pp. 553-560 ◽  
Author(s):  
Naoki Tokumasa ◽  
Akira Suto ◽  
Shin-ichiro Kagami ◽  
Shunsuke Furuta ◽  
Koichi Hirose ◽  
...  

Abstract It is well documented that dendritic cells (DCs), representative antigen-presenting cells, are important sources of Th1-promoting cytokines and are actively involved in the regulation of T-helper–cell differentiation. However, the intracellular event that regulates this process is still largely unknown. In this study, we examined the role of Tyk2, a JAK kinase that is involved in the signaling pathway under IL-12 and IL-23, in DC functions. While the differentiation and maturation of DCs was normal in Tyk2-deficient (Tyk2−/−) mice, IL-12–induced Stat4 phosphorylation was diminished in Tyk2−/− DCs. IL-12–induced IFN-γ production was also significantly diminished in Tyk2−/− DCs to levels similar to those in Stat4−/− DCs. Interestingly, Tyk2−/− DCs were defective in IL-12 and IL-23 production upon stimulation with CpG ODN. Furthermore, Tyk2−/− DCs were impaired in their ability to induce Th1-cell differentiation but not Th2-cell differentiation. Taken together, these results indicate that the expression of Tyk2 in DCs is crucial for the production of Th1-promoting cytokines such as IL-12 and IFN-γ from DCs and thereby for the induction of antigen-specific Th1-cell differentiation.


2004 ◽  
Vol 32 (4) ◽  
pp. 629-632 ◽  
Author(s):  
T. Lehner ◽  
Y. Wang ◽  
T. Whittall ◽  
E. McGowan ◽  
C.G. Kelly ◽  
...  

Microbial HSP70 (heat-shock protein 70) consists of three functionally distinct domains: an N-terminal 44 kDa ATPase portion (amino acids 1–358), followed by an 18 kDa peptide-binding domain (amino acids 359–494) and a C-terminal 10 kDa fragment (amino acids 495–609). Immunological functions of these three different domains in stimulating monocytes and dendritic cells have not been fully defined. However, the C-terminal portion (amino acids 359–610) stimulates the production of CC chemokines, IL-12 (interleukin-12), TNFα(tumour necrosis factor α), NO and maturation of dendritic cells and also functions as an adjuvant in the induction of immune responses. In contrast, the ATPase domain of microbial HSP70 mostly lacks these functions. Since the receptor for HSP70 is CD40, which with its CD40 ligand constitutes a major co-stimulatory pathway in the interaction between antigen-presenting cells and T-cells, HSP70 may function as an alternative ligand to CD40L. HSP70–CD40 interaction has been demonstrated in non-human primates to play a role in HIV infection, in protection against Mycobacterium tuberculosis and in conversion of tolerance to immunity.


2009 ◽  
Vol 69 (6) ◽  
pp. 1235-1238 ◽  
Author(s):  
Petra Vogelsang ◽  
Johan G Brun ◽  
Gunnvor Øijordsbakken ◽  
Kathrine Skarstein ◽  
Roland Jonsson ◽  
...  

ObjectiveSjögren's syndrome (SS) is a lymphoproliferative autoimmune disease, characterised by dryness of the mouth and eyes. Dendritic cells (DC) are potent antigen-presenting cells crucial for initiating and maintaining primary immune responses. This study quantified interferon-producing plasmacytoid DC (pDC) and two myeloid DC subsets (mDC1 and mDC2) in peripheral blood (PB) from primary SS (pSS) patients and healthy controls.MethodsBlood samples from 31 pSS patients and 28 gender and age-matched healthy controls were analysed by flow cytometry using the Miltenyi Blood DC enumeration kit. The presence of pDC in salivary glands (SG) from pSS patients was analysed by immunohistochemistry.ResultsPatients with pSS had significantly less pDC and mDC2 in PB compared with healthy controls. Moreover, pDC are present in SG from patients with pSS.ConclusionPatients with pSS have alterations among DC populations in PB, and pDC are present in the SG, suggesting a potential role of these cells in SS.


Sign in / Sign up

Export Citation Format

Share Document