Polymicrobial Sepsis but Not Low-Dose Endotoxin Infusion Causes Decreased Splenocyte IL-2/IFN-γ Release While Increasing IL-4/IL-10 Production

1994 ◽  
Vol 56 (6) ◽  
pp. 579-585 ◽  
Author(s):  
Alfred Ayala ◽  
Zoe K. Deol ◽  
Donna L. Lehman ◽  
Crystal D. Herdon ◽  
Irshad H. Chaudry
1999 ◽  
Vol 10 (2) ◽  
pp. 361-372 ◽  
Author(s):  
Andreas von Knethen ◽  
Dagmar Callsen ◽  
Bernhard Brüne

A toxic dose of the nitric oxide (NO) donorS-nitrosoglutathione (GSNO; 1 mM) promoted apoptotic cell death of RAW 264.7 macrophages, which was attenuated by cellular preactivation with a nontoxic dose of GSNO (200 μM) or with lipopolysaccharide, interferon-γ, and NG-monomethyl-l-arginine (LPS/IFN-γ/NMMA) for 15 h. Protection from apoptosis was achieved by expression of cyclooxygenase-2 (Cox-2). Here we investigated the underlying mechanisms leading to Cox-2 expression. LPS/IFN-γ/NMMA prestimulation activated nuclear factor (NF)-κB and promoted Cox-2 expression. Cox-2 induction by low-dose GSNO demanded activation of both NF-κB and activator protein-1 (AP-1). NF-κB supershift analysis implied an active p50/p65 heterodimer, and a luciferase reporter construct, containing four copies of the NF-κB site derived from the murine Cox-2 promoter, confirmed NF-κB activation after NO addition. An NF-κB decoy approach abrogated not only Cox-2 expression after low-dose NO or after LPS/IFN-γ/NMMA but also inducible protection. The importance of AP-1 for Cox-2 expression and cell protection by low-level NO was substantiated by using the extracellular signal-regulated kinase inhibitor PD98059, blocking NO-elicited Cox-2 expression, but leaving the cytokine signal unaltered. Transient transfection of a dominant-negative c-Jun mutant further attenuated Cox-2 expression by low-level NO. Whereas cytokine-mediated Cox-2 induction relies on NF-κB activation, a low-level NO–elicited Cox-2 response required activation of both NF-κB and AP-1.


2000 ◽  
Vol 68 (12) ◽  
pp. 6879-6882 ◽  
Author(s):  
Andrea M. Cooper ◽  
John E. Pearl ◽  
Jason V. Brooks ◽  
Stefan Ehlers ◽  
Ian M. Orme

ABSTRACT The interleukin-12 and gamma interferon (IFN-γ) pathway of macrophage activation plays a pivotal role in controlling tuberculosis. In the murine model, the generation of supplementary nitric oxide by the induction of the nitric oxide synthase 2 (NOS2) gene product is considered the principal antimicrobial mechanism of IFN-γ-activated macrophages. Using a low-dose aerosol-mediated infection model in the mouse, we have investigated the role of nitric oxide in controllingMycobacterium tuberculosis in the lung. In contrast to the consequences of a systemic infection, a low dose of bacteria introduced directly into the lungs of mice lacking the NOS2 gene is controlled almost as well as in intact animals. This is in contrast to the rapid progression of disease in mice lacking IFN-γ or a key member of the IFN signaling pathway, interferon regulatory factor 1. Thus while IFN-γ is pivotal in early control of bacterial growth in the lung, this control does not completely depend upon the expression of the NOS2 gene. The absence of inducible nitric oxide in the lung does, however, result in increased polymorphonuclear cell involvement and eventual necrosis in the pulmonary granulomas of the infected mice lacking the NOS2 gene.


Open Medicine ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 827-832
Author(s):  
Xin Zheng ◽  
Nini Qu ◽  
Lina Wang ◽  
Guoli Wang ◽  
Rui Jiao ◽  
...  

AbstractCigarette smoking is known to induce serious lung diseases, but there is not an effective method to solve this problem. The present study investigated vitamin D3 on over-expression of CXCR3 and CXCL10 in mice induced by cigarette smoking. A pulmonary airway model was designed, and morphological assessment of emphysema, IL-4, IFN-γ and CXCL10 concentration in bronchoalveolar lavage fluids, expression of CXCR3 and CXCL10 were detected. Emphysema of the mice only exposed to cigarette smoke was significant, and concentration of IL-4, IFN-γ and CXCL10 was also increased. In addition, CXCR3 and CXCL10 were over-expressed. The degree of emphysema, concentration of IL-4, IFN-γ and CXCL10, and expression of CXCR3 and CXCL10 in mice administrated with low dose vitamin D3 were similar to the normally treated mice. Low dose of vitamin D3 can effectively protect the lung from the damage induced by cigarette smoke.


Parasite ◽  
1998 ◽  
Vol 5 (3) ◽  
pp. 231-237 ◽  
Author(s):  
M. Liance ◽  
S. Ricard-Blum ◽  
I. Emery ◽  
R. Houin ◽  
D.A. Vuitton
Keyword(s):  
Low Dose ◽  

Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3647-3653 ◽  
Author(s):  
Todd A. Fehniger ◽  
William E. Carson ◽  
Ewa Mrózek ◽  
Michael A. Caligiuri

Abstract The administration of low dose interleukin-2 (IL-2) results in a selective expansion of natural killer (NK) cells in vivo, and promotes the differentiation of NK cells from hematopoietic precursor cells in vitro. We have previously shown that stem cell factor (SCF ), the ligand to the c-kit tyrosine kinase receptor, enhances IL-2–induced NK cell proliferation and differentiation in vitro. Here, we investigated the effects of SCF plus IL-2 delivered to mice in vivo. Eight-week-old C57BL/6 mice were treated with a continuous subcutaneous infusion of IL-2 (1 × 104 IU/d) plus a daily intraperitoneal dose of SCF (100 μg/kg/d), IL-2 alone, SCF alone, or vehicle alone for 8 weeks. The in vivo serum concentration of IL-2 ranged between 352 ± 12.0 pg/mL and 606 ± 9.0 pg/mL, achieving selective saturation of the high affinity IL-2 receptor, while the peak SCF serum concentration was 296 ± 13.09 ng/mL. Alone, the daily administration of SCF had no effect on the expansion of NK cells. The continuous infusion of IL-2 alone did result in a significant expansion of NK1.1+CD3− cells compared to mice treated with placebo or SCF. However, mice treated with both SCF and IL-2 showed an increase in the absolute number of NK cells that was more than twofold that seen with IL-2 alone, in the spleen (P ≤ .005), bone marrow (P ≤ .025), and blood (P < .05). NK cytotoxic activity against YAC-1 target cells was significantly higher for mice treated with SCF plus IL-2, compared to mice treated with IL-2 alone (P ≤ .0005). Interferon-γ (IFN-γ) production in cytokine-activated splenocytes was also greater for the SCF plus IL-2 group, over IL-2 treatment alone (P ≤ .01). The effect of SCF plus IL-2 on NK cell expansion was likely mediated via NK cell precursors, rather than mature NK cells. In summary, we provide the first evidence that SCF can significantly enhance expansion of functional NK cells induced by the prolonged administration of low dose IL-2 in vivo. Since the NK cell is a cytotoxic innate immune effector and a potent source of IFN-γ, this therapeutic strategy for NK cell expansion may serve to further enhance innate immune surveillance against malignant transformation and infection in the setting of cancer and/or immunodeficiency.


2020 ◽  
Vol 8 (1) ◽  
pp. e000247
Author(s):  
Brett A Schroeder ◽  
Ralph Graeme Black ◽  
Sydney Spadinger ◽  
Shihong Zhang ◽  
Karan Kohli ◽  
...  

BackgroundAdoptive cellular therapy (ACT) is a promising treatment for synovial sarcoma (SS) with reported response rates of over 50%. However, more work is needed to obtain deeper and more durable responses. SS has a ‘cold’ tumor immune microenvironment with low levels of major histocompatibility complex (MHC) expression and few T-cell infiltrates, which could represent a barrier toward successful treatment with ACT. We previously demonstrated that both MHC expression and T-cell infiltration can be increased using systemic interferon gamma (IFN-γ), which could improve the efficacy of ACT for SS.Case presentationWe launched a phase I trial incorporating four weekly doses of IFN-γ in an ACT regimen of high-dose cyclophosphamide (HD Cy), NY-ESO-1-specific T cells, and postinfusion low-dose interleukin (IL)-2. Two patients were treated. While one patient had significant tumor regression and resultant clinical benefit, the other patient suffered a fatal histiocytic myocarditis. Therefore, this cohort was terminated for safety concerns.ConclusionWe describe a new and serious toxicity of immunotherapy from IFN-γ combined with HD Cy-based lymphodepletion and low-dose IL-2. While IFN-γ should not be used concurrently with HD Cy or with low dose IL-2, IFN-γ may still be important in sensitizing SS for ACT. Future studies should avoid using IFN-γ during the immediate period before/after cell infusion.Trial registration numbersNCT04177021,NCT01957709, andNCT03063632.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3221-3221
Author(s):  
Jian-Ming Li ◽  
John W. Gorechlad ◽  
Cindy Giver ◽  
Christian P. Larsen ◽  
Ned Waller

Abstract Background: Non-myeloablative conditioning can avoid early post-transplant toxicity associated with myeloablative conditioning prior to allogeneic hematopoietic progenitor cell transplantation (HPCT). In order to achieve bidirectional host vs. donor and donor vs. host tolerance, we developed a transplant model utilizing a pre-transplant dose of “tolerizing” donor cells in combination with anti-CD40L monoclonal antibody (mAb) treatment (Adams et al., JI167:1103, 2001). In the current study we tested whether pre-transplant administration of apoptotic donor cells would enhance immune tolerance in a non-myeloablative model of murine BMT utilizing a low dose busulfan and anti-CD40L mAb. Methods: we tested the effect of graded doses of ionizing gamma irradiation (7.5, 15, and 30 Gy) on donor splenocytes administered as a tolerizing dose of alloantigen on 6 days pre-BMT. Mixed lymphocyte reactions (MLR) were performed using host-type lymphocytes as responders and irradiated cells as stimulators in the presence or absence of anti-CD40L mAb. Secretion of inflammatory cytokine (IFN-γ and TNF-α) and anti-inflammatory cytokine (IL-10) and cell proliferation (CFSE dilution) were measured. Results: Graded doses of irradiation (0, 7.5, 15, and 30 Gy) produced increasing frequencies of apoptosis in murine splenocytes (4, 26, 41, 49, and 27 % apoptotic cells, respectively). Irradiation of MLR stimulators abrogated the immunosuppressive effect of anti-CD40L mAb. Using MLR with untreated (non-irradiated stimulators), proliferation of CFSE-stained responder T-cells (Figure 1A) and synthesis of IFN-γ and TNF-α were decreased, while production of IL-10 increased in the presence of anti-CD40L mAb (Figure 1B). Irradiated, apoptotic stimulators led to graded increases in IFN-γ and TNF-α synthesis (Figure 1B), increased proliferation of CFSE-stained responder T-cells (Figure 1A), and decreased production of IL-10 in MLR containing anti-CD40L mAb (Figure 1B). Contrary to our predictions, mixed-chimerism without GVHD was enhanced by pre-transplant administration of viable allogeneic splenocytes, and diminished in mice with prior exposure to apoptotic/necrotic donor splenocytes at test points up to 250 days post-transplant. Psoralen plus ultraviolet A treated splenocytes had a similar frequency of apoptotic cells and led to a similar level of donor chimerism as 7.5 Gy irradiation-treated cells. The highest level of donor chimerism was observed when viable donor CD11b+ splenocytes were administered pre-transplant as the “tolerizing” cell infusion. Conclusion: The pre-transplant administration of donor splenocytes rendered apoptotic/necrotic by irradiation doses of 15 Gy or higher led to lower levels of donor BM-derived chimerism compared to transplant regimens containing viable donor splenocyte administered on prior to BMT or day −6 regimens with no “ tolerizing ” pre-transplant donor cells in a non-myeloablative model of murine BMT utilizing low-dose busulfan and anti-CD40L mAb. Bidirectional tolerance induced by anti-CD40L mAb is an active process involving viable donor cells. The mechanisms whereby anti-CD40L mAb induces tolerance via participation of donor and host regulatory elements will be discussed. Figure 1 Figure 1.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 106-106
Author(s):  
Michelle Gleason ◽  
Todd Lenvik ◽  
Valarie McCullar ◽  
Sarah Cooley ◽  
Michael Verneris ◽  
...  

Abstract Abstract 106 NK cells are an attractive option for immunotherapy as they do not require pre-sensitization for anti-tumor activity and do not induce graft versus host disease (GvHD) in an allogeneic transplant setting. The potential of NK cells in controlling human hematological malignancies has been increasingly recognized in recent years, as the adoptive transfer of alloreactive NK cells in hematopoietic cell transplantation (HCT) clinical trials have demonstrated therapeutic anti-leukemia effects. NK cell function is regulated by the integration of antagonist signals received from cell surface activating and inhibitory receptors. Tim-3 is a novel immune receptor that is a member of the T cell immunoglobulin and mucin-containing domain (TIM) family of glycoproteins. While its role in T cells and antigen presenting cells has been described, little is known about its function in human NK cells. While Tim-3 is present on a variety of immune cells, resting NK cells constitutively express Tim-3 compared to other lymphocyte populations (NK: 73±3%; NKT: 6±1%; T: 1±1%; n=14) and we hypothesized that Tim-3 may be important in mediating NK cell function. The unique subset of cytokine producing CD56Bright NK cells exhibited significantly lower resting Tim-3 expression compared to CD56Dim NK cells (53±3% vs. 75±3%; p<0.001, n=14). Distinct Tim-3 expression patterns were found on resting CD56Dim NK cells and activation with low dose IL-12 (1ng/mL) and IL-18 (10ng/mL), intended to more closely mimic physiologic conditions, resulted in further differentiation of this unique expression pattern dividing NK cells into 4 distinct populations: Tim-3 was homogeneously up-regulated on all CD56Bright NK cells after activation while CD56Dim NK cells were further stratified into 3 defined populations with Tim-3hi, Tim-3lo and Tim-3neg expression. The only identified ligand of Tim-3 is galectin-9 (Gal-9), a β-galactoside binding lectin, which is expressed on a wide range of healthy and malignant cells. To investigate the potential function of Tim-3, an expression vector containing human Gal-9 was transduced into K562 and Raji cells, both without endogenous Gal-9 expression. Resting NK cytotoxicity (51Cr release) was found to be increased in the presence of Gal-9 compared to the non-Gal-9 expressing targets [E:T=0.7:1, K562 vs. K562-Gal-9: 25±3% vs. 33±3% (n=8, p<0.05); E:T=20:1, Raji vs. Raji-Gal-9: 8±1% vs. 17±2% (n=4, p<0.05)]. Analysis of CD107a degranulation showed that resting Tim-3+ CD56Bright cells were more functional against Gal-9 expressing targets than Tim-3− CD56Bright cells, suggesting that Tim-3 might also play a role in IFN-γ production. To further investigate this, resting NK cells were activated with low-dose IL-12/IL-18 overnight and IFN-γ levels were measured in response to soluble rhGal-9 (0, 2.5, 5, 10 and 20nM). Exposure to soluble rhGal-9 alone without IL-12/IL-18 did not induce IFN-γ production. For both the CD56Bright and CD56Dim IL-12/IL-18 activated NK populations, only Tim-3+ NK cells displayed a dose dependent increase in IFN-γ production upon exposure to soluble rhGal-9 compared to Tim-3− NK cells. To understand the relevance of the distinct Tim-3 populations circulating in resting blood, CD56Bright, CD56Dim/Tim-3hi, CD56Dim/Tim-3lo and CD56Dim/Tim-3neg populations were sorted, cultured overnight in IL-12/IL-18 and exposed to soluble rhGal-9. Results showed the Tim-3 expressing populations contain the predominant IFN-γ producing cells that were responsive to rhGal-9 (results for the sorted CD56Dim/Tim-3lo population shown in the figure below). This increase in IFN-γ production within the Tim-3 expressing NK cell populations was abrogated by the addition of β-lactose, a β-galactoside that binds and blocks Gal-9 activity. Lastly, Western blot and immunohistochemistry analysis of human primary acute leukemia blasts revealed high Gal-9 expression. As the presence of ligands for NK cell activating receptors on tumors provide an important prerequisite for NK cell activation and effector function, we show a novel functional role for the receptor Tim-3 in human NK cell biology in the presence of its ligand Gal-9. We, therefore, propose a model where constitutively expressed Tim-3 is up-regulated by NK cell activation and effector function is enhanced by Tim-3/Gal-9 interaction, which may potentiate the elimination of Gal-9 positive tumors by NK cells. Disclosures: Niki: GalPharma: Membership on an entity's Board of Directors or advisory committees. Hirashima:GalPharma: Membership on an entity's Board of Directors or advisory committees.


2011 ◽  
Vol 79 (3) ◽  
pp. 1077-1085 ◽  
Author(s):  
Maria P. Lemos ◽  
John McKinney ◽  
Kyu Y. Rhee

ABSTRACTSurfactant proteins A and D (SP-A and -D) play a role in many acute bacterial, viral, and fungal infections and in acute allergic responses.In vitro, human SPs bindMycobacterium tuberculosisand alter human and rat macrophage-mediated functions. Here we report the roles of SP-A and SP-D inM. tuberculosisinfection following aerosol challenge of SP-A-, SP-D-, and SP-A/-D-deficient mice. These studies surprisingly identified no gross defects in uptake or immune control ofM. tuberculosisin SP-A-, SP-D-, and SP-A/-D-deficient mice. While both SP-A- and SP-D-deficient mice exhibited evidence of immunopathologic defects, the CD11bhighCD11chighdendritic cell populations and the gamma interferon (IFN-γ)-dependent CD4+T cell response toM. tuberculosiswere unaltered in all genotypes tested. Together, these data indicate that SP-A and SP-D are dispensable for immune control ofM. tuberculosisin a low-dose, aerosol challenge, murine model of tuberculosis (TB).


2003 ◽  
Vol 47 (8) ◽  
pp. 2513-2517 ◽  
Author(s):  
Henry W. Murray ◽  
Elaine B. Brooks ◽  
Jennifer L. DeVecchio ◽  
Frederick P. Heinzel

ABSTRACT To determine if stimulation of Th1-cell-associated immune responses, mediated by interleukin 12 (IL-12) and gamma interferon (IFN-γ), enhance the antileishmanial effect of amphotericin B (AMB), Leishmania donovani-infected BALB/c mice were first treated with (i) exogenous IL-12 to induce IFN-γ, (ii) agonist anti-CD40 monoclonal antibody (MAb) to maintain IL-12 and induce IFN-γ, or (iii) anti-IL-10 receptor (IL-10R) MAb to blockade suppression of IL-12 and IFN-γ. In animals with established visceral infection, low-dose AMB alone (two injections of 1 mg/kg of body weight; total dose, 2 mg/kg) killed 15 to 29% of liver parasites; by themselves, the immunointerventions induced 16 to 33% killing. When the interventions were combined, the leishmanicidal activities increased 3.4-fold (anti-CD40), 6.3-fold (anti-IL-10R), and 9-fold (IL-12) compared with the activities of AMB plus the control preparations; and overall killing (76 to 84%) approximated the 84 to 92% killing effect of 7.5-fold more AMB alone (three injections of 5 mg/kg; total dose, 15 mg/kg). These results suggest that strengthening the host Th1-cell response may be a strategy for the development of AMB-sparing regimens in visceral leishmaniasis.


Sign in / Sign up

Export Citation Format

Share Document