Finding Functional Structures in Ggioma Gene-Expressions Using Gene Shaving Clustering and MDL Principle

Author(s):  
Ciprian D. Giurcaneanu ◽  
Cristian Mircean ◽  
Gregory N. Fuller ◽  
Ioan Tabus
Author(s):  
Nariaki Fujimoto ◽  
Mutsumi Matsuu-Matsuyama ◽  
Masahiro Nakashima

2020 ◽  
Vol 22 (1) ◽  
pp. 115-122
Author(s):  
Amarila Malik ◽  
Elita Yuliantie ◽  
Nisa Yulianti Suprahman ◽  
Theresa Linardi ◽  
Angelina Wening Widiyanti ◽  
...  

Background: Bacteriocins (Bac1, Bac2, and Bac3) from Weissella confusa MBF8-1, weissellicin- MBF, have been reported as potential alternative substances as well as complements to the existing antibiotics against many antimicrobial-resistant pathogens. Previously, the genes encoded in the large plasmid, pWcMBF8-1, and the spermicidal activity of their synthetic peptides, originally discovered Indonesia, have been studied. Three synthetic bacteriocins peptides of this weissellicin-MBF have been reported for their potential activities, i.e. antibacterial and spermicidal. Objective: The aim of this study was to construct the recombinant Bacteriocin (r-Bac) genes, as well as to investigate the gene expressions and their functional analysis. Method: Here, the recombinant Bacteriocin (r-Bac) genes were constructed and the recombinant peptides (r-Bac1, r-Bac2, and r-Bac3) in B. subtilis DB403 cells were produced on a large scale. After purification, using the His-tag affinity column, their potential bioactivities were measured as well as their antibacterial minimum inhibitory concentrations against Leuconostoc mesenteroides and Micrococcus luteus, were determined. Results: Pure His-tag-recombinant Bac1, Bac2, and Bac3 were obtained and they could inhibit the growth of L. mesenteroides and M. luteus. Conclusion: The recombinant bacteriocin could be obtained although with weak activity in inhibiting gram-positive bacterial growth.


2017 ◽  
Vol 14 (7) ◽  
Author(s):  
Isabela Bazzo da Costa ◽  
Roger Willian de Labio ◽  
Lucas Trevizani Rasmussen ◽  
Gustavo Arruda Viani ◽  
Elizabeth Chen ◽  
...  

2020 ◽  
Vol 17 ◽  
Author(s):  
Asma Babar ◽  
Kifayatullah Mengal ◽  
Abdul Hanan Babar ◽  
Shixin Wu ◽  
Mujahid Ali Shah ◽  
...  

: The world highest and largest altitude area is called the Qinghai-Tibetan plateau (QTB), which harbors unique animal and plant species. Mammals that inhabit the higher altitude regions have adapted well to the hypoxic conditions. One of the main stressors at high altitude is hypoxia. Metabolic responses to hypoxia play important roles in cell survival strategies and some diseases. However, the homeostatic alterations that equilibrate variations in the demand and supply of energy to maintain organismal function in a prolonged low O2 environment persist partly understood, making it problematic to differentiate adaptive from maladaptive responses in hypoxia. Tibetans and yaks are two perfect examples innate to the plateau for high altitude adaptation. By the scan of the whole-genome, EPAS1 and EGLN1 were identified as key genes associated with sustained haemoglobin concentration in high altitude mammals for adaptation. The yak is a much more ancient mammal which has existed on QTB longer than humans, it is, therefore, possible that natural selection represented a diverse group of genes/pathways in yaks. Physiological characteristics are extremely informative in revealing molecular networks associated with inherited adaptation, in addition to the whole-genome adaptive changes at the DNA sequence level. Gene-expression can be changed by a variety of signals originating from the environment, and hypoxia is the main factor amongst them. The hypoxia-inducible factors (HIF-1α and EPAS1/HIF-2α) are the main regulators of oxygen in homeostasis which play a role as maestro regulators of adaptation in hypoxic reaction of molecular mechanisms. (Vague) The basis of this review is to present recent information regarding the molecular mechanism involved in hypoxia that regulates candidate genes and proteins. Many transcriptional responses toward hypoxia are facilitated by HIFs that change the number of gene expressions and help in angiogenesis, erythropoiesis, metabolic reprogramming and metastasis. HIFs also activate several signals highlighting a strong association between hypoxia, the misfolded proteins’ accumulation in the endoplasmic reticulum in stress and activation of unfolded protein response (UPR). It was observed that at high-altitude, pregnancies yield a low birth weight ∼100 g per1000 m of the climb. (Vague) It may involve variation in the events of energy-demanding, like protein synthesis. Prolonged hypobaric hypoxia causes placental ER stress, which in turn, moderates protein synthesis and reduces proliferation. Further, Cardiac hypertrophy by cytosolic Ca2+ raises and Ca2+/calmodulin, calcineurin stimulation, NF-AT3 pathway might be caused by an imbalance in Sarcoplasmic reticulum ER Ca2, might be adaptive in beginning but severe later.


2020 ◽  
Vol 17 (3) ◽  
pp. 191-199
Author(s):  
Seval Yilmaz ◽  
Fatih Mehmet Kandemir ◽  
Emre Kaya ◽  
Mustafa Ozkaraca

Objective: This study aimed to detect hepatic oxidative damage caused by aflatoxin B1 (AFB1), as well as to examine how propolis protects against hepatotoxic effects of AFB1. Method: Rats were split into four groups as control group, AFB1 group, propolis group, AFB1+ propolis group. Results: There was significant increase in malondialdehyde (MDA) level and tumor suppressor protein (TP53) gene expression, Glutathione (GSH) level, Catalase (CAT) activity, CAT gene expression decreased in AFB1 group in blood. MDA level and Glutathione-S-Transferase (GST) activity, GST and TP53 gene expressions increased in AFB1 group, whereas GSH level and CAT activity alongside CAT gene expression decreased in liver. AFB1+propolis group showed significant decrease in MDA level, GST activity, TP53 and GST gene expressions, GSH level and CAT activity and CAT gene expression increased in liver compared to AFB1 group. Conclusion: These results suggest that propolis may potentially be natural agent that prevents AFB1- induced oxidative stress and hepatotoxicity.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Na Jiang ◽  
Xiaoyu Zhang ◽  
Xuejun Gu ◽  
Xiaozhuang Li ◽  
Lei Shang

AbstractLong non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides but not translated into proteins. LncRNAs regulate gene expressions at multiple levels, such as chromatin, transcription, and post-transcription. Further, lncRNAs participate in various biological processes such as cell differentiation, cell cycle regulation, and maintenance of stem cell pluripotency. We have previously reported that lncRNAs are closely related to programmed cell death (PCD), which includes apoptosis, autophagy, necroptosis, and ferroptosis. Overexpression of lncRNA can suppress the extrinsic apoptosis pathway by downregulating of membrane receptors and protect tumor cells by inhibiting the expression of necroptosis-related proteins. Some lncRNAs can also act as competitive endogenous RNA to prevent oxidation, thereby inhibiting ferroptosis, while some are known to activate autophagy. The relationship between lncRNA and PCD has promising implications in clinical research, and reports have highlighted this relationship in various cancers such as non-small cell lung cancer and gastric cancer. This review systematically summarizes the advances in the understanding of the molecular mechanisms through which lncRNAs impact PCD.


Sign in / Sign up

Export Citation Format

Share Document