High Altitude hypoxia

2020 ◽  
Vol 17 ◽  
Author(s):  
Asma Babar ◽  
Kifayatullah Mengal ◽  
Abdul Hanan Babar ◽  
Shixin Wu ◽  
Mujahid Ali Shah ◽  
...  

: The world highest and largest altitude area is called the Qinghai-Tibetan plateau (QTB), which harbors unique animal and plant species. Mammals that inhabit the higher altitude regions have adapted well to the hypoxic conditions. One of the main stressors at high altitude is hypoxia. Metabolic responses to hypoxia play important roles in cell survival strategies and some diseases. However, the homeostatic alterations that equilibrate variations in the demand and supply of energy to maintain organismal function in a prolonged low O2 environment persist partly understood, making it problematic to differentiate adaptive from maladaptive responses in hypoxia. Tibetans and yaks are two perfect examples innate to the plateau for high altitude adaptation. By the scan of the whole-genome, EPAS1 and EGLN1 were identified as key genes associated with sustained haemoglobin concentration in high altitude mammals for adaptation. The yak is a much more ancient mammal which has existed on QTB longer than humans, it is, therefore, possible that natural selection represented a diverse group of genes/pathways in yaks. Physiological characteristics are extremely informative in revealing molecular networks associated with inherited adaptation, in addition to the whole-genome adaptive changes at the DNA sequence level. Gene-expression can be changed by a variety of signals originating from the environment, and hypoxia is the main factor amongst them. The hypoxia-inducible factors (HIF-1α and EPAS1/HIF-2α) are the main regulators of oxygen in homeostasis which play a role as maestro regulators of adaptation in hypoxic reaction of molecular mechanisms. (Vague) The basis of this review is to present recent information regarding the molecular mechanism involved in hypoxia that regulates candidate genes and proteins. Many transcriptional responses toward hypoxia are facilitated by HIFs that change the number of gene expressions and help in angiogenesis, erythropoiesis, metabolic reprogramming and metastasis. HIFs also activate several signals highlighting a strong association between hypoxia, the misfolded proteins’ accumulation in the endoplasmic reticulum in stress and activation of unfolded protein response (UPR). It was observed that at high-altitude, pregnancies yield a low birth weight ∼100 g per1000 m of the climb. (Vague) It may involve variation in the events of energy-demanding, like protein synthesis. Prolonged hypobaric hypoxia causes placental ER stress, which in turn, moderates protein synthesis and reduces proliferation. Further, Cardiac hypertrophy by cytosolic Ca2+ raises and Ca2+/calmodulin, calcineurin stimulation, NF-AT3 pathway might be caused by an imbalance in Sarcoplasmic reticulum ER Ca2, might be adaptive in beginning but severe later.

2019 ◽  
Vol 16 ◽  
Author(s):  
Asma Babar ◽  
Kifayatullah Mengal ◽  
Shixin Wu ◽  
Mujahid Ali Shah ◽  
Chuanfei Xu ◽  
...  

: World highest and largest altitude to be called is Qinghai-Tibetan plateau (QTB), which harbors unique animal and plant species. Mammals that inhabit the higher altitude regions have adapted well to the hypoxic conditions. One of Main stressor at high altitude is Hypoxia. Metabolic responses to hypoxia play important roles in cell survival strategies and disease However, the homeostatic alterations that equilibrate variations in demand and supply of energy to maintain organismal function in prolonged low O2 circumstances persist partly understood, making it problematic to differentiate adaptive from maladaptive responses in hypoxia. Tibetans and yaks are two perfect examples innate to the plateau for high altitude adaptation. By the scan of whole genome EPAS1 and EGLN1 identified as key genes associated in sustain haemoglobin concentration in high altitude mammals for adaptation. The yak is much ancient mammal existed on QTB than human, it is therefore possible that natural selection had represented on a diverse group of genes/pathways in yaks. Physiological characters are extremely informative in revealing molecular networks associated in inherited adaptation, in addition to whole-genome adaptive changes at the DNA sequence level. Gene expression can be changed by a variety of signals originating from the environment, and hypoxia is the main factor amongst them. The hypoxia-inducible factors (HIF-1α and EPAS1/HIF-2α) are the main oxygen homeostasis that role as maestro regulators of adaption in hypoxic reaction to molecular mechanisms. Basis of this review is to present recent information of molecular mechanism that involved in hypoxia that regulates candidate genes and proteins. Many transcriptional responses toward hypoxia are facilitated via HIFs that switch the number of gene expressions and helps to angiogenesis, erythropoiesis, metabolic reprogramming and metastasis. HIFs also activate a number of signal points toward a solid association between hypoxia, the misfolded proteins accumulation in the endoplasmic reticulum in stress and unfolded protein response (UPR) activation. It was observed that in high-altitude pregnancy have low birth weight ∼100 g per1000 m of climb. It may involve variation in events of energy demanding, like protein synthesis. Prolonged hypobaric hypoxia causes placental ER stress, which, in turn, moderates protein synthesis and reduces proliferation. Further, Cardiac hypertrophy by cytosolic Ca2+ raise and Ca2+/calmodulin, calcineurin stimulation, NF-AT3 pathway might be caused by imbalance in Sarcoplasmic reticulum ER Ca2, might be adaptive in beginning but severe later.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1305
Author(s):  
Jingwen Zou ◽  
Kunpeng Du ◽  
Shaohua Li ◽  
Lianghe Lu ◽  
Jie Mei ◽  
...  

Background: In recent years, metabolic reprogramming has been identified as a hallmark of cancer. Accumulating evidence suggests that glutamine metabolism plays a crucial role in oncogenesis and the tumor microenvironment. In this study, we aimed to perform a systematic and comprehensive analysis of six key metabolic node genes involved in the dynamic regulation of glutamine metabolism (referred to as GLNM regulators) across 33 types of cancer. Methods: We analyzed the gene expression, epigenetic regulation, and genomic alterations of six key GLNM regulators, including SLC1A5, SLC7A5, SLC3A2, SLC7A11, GLS, and GLS2, in pan-cancer using several open-source platforms and databases. Additionally, we investigated the impacts of these gene expression changes on clinical outcomes, drug sensitivity, and the tumor microenvironment. We also attempted to investigate the upstream microRNA–mRNA molecular networks and the downstream signaling pathways involved in order to uncover the potential molecular mechanisms behind metabolic reprogramming. Results: We found that the expression levels of GLNM regulators varied across cancer types and were related to several genomic and immunological characteristics. While the immune scores were generally lower in the tumors with higher gene expression, the types of immune cell infiltration showed significantly different correlations among cancer types, dividing them into two clusters. Furthermore, we showed that elevated GLNM regulators expression was associated with poor overall survival in the majority of cancer types. Lastly, the expression of GLNM regulators was significantly associated with PD-L1 expression and drug sensitivity. Conclusions: The elevated expression of GLNM regulators was associated with poorer cancer prognoses and a cold tumor microenvironment, providing novel insights into cancer treatment and possibly offering alternative options for the treatment of clinically refractory cancers.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Mohammad Amin Khazeei Tabari ◽  
Mohammad Amir Mishan ◽  
Mona Moradi ◽  
Mohanna Khandan ◽  
Hooman Khoshhal ◽  
...  

Aspirin, as one of the most frequently prescribed drugs, can have therapeutic effects on different conditions such as cardiovascular and metabolic disorders and malignancies. The effects of this common cardiovascular drug are exerted through different molecular and cellular pathways. Altered noncoding RNA (ncRNA) expression profiles during aspirin treatments indicate a close relationship between these regulatory molecules and aspirin effects through regulating gene expressions. A better understanding of the molecular networks contributing to aspirin efficacy would help optimize efficient therapies for this very popular drug. This review is aimed at discussing and highlighting the identified interactions between aspirin and ncRNAs and their targeting pathways and better understanding pharmacogenetic responses to aspirin.


2017 ◽  
Vol 123 (5) ◽  
pp. 1362-1370 ◽  
Author(s):  
Colleen G. Julian

Over the past decade, major technological and analytical advancements have propelled efforts toward identifying the molecular mechanisms that govern human adaptation to high altitude. Despite remarkable progress with respect to the identification of adaptive genomic signals that are strongly associated with the “hypoxia-tolerant” physiological characteristics of high-altitude populations, many questions regarding the fundamental biological processes underlying human adaptation remain unanswered. Vital to address these enduring questions will be determining the role of epigenetic processes, or non-sequence-based features of the genome, that are not only critical for the regulation of transcriptional responses to hypoxia but heritable across generations. This review proposes that epigenomic processes are involved in shaping patterns of adaptation to high altitude by influencing adaptive potential and phenotypic variability under conditions of limited oxygen supply. Improved understanding of the interaction between genetic, epigenetic, and environmental factors holds great promise to provide deeper insight into the mechanisms underlying human adaptive potential, and clarify its implications for biomedical research.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Na Jiang ◽  
Xiaoyu Zhang ◽  
Xuejun Gu ◽  
Xiaozhuang Li ◽  
Lei Shang

AbstractLong non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides but not translated into proteins. LncRNAs regulate gene expressions at multiple levels, such as chromatin, transcription, and post-transcription. Further, lncRNAs participate in various biological processes such as cell differentiation, cell cycle regulation, and maintenance of stem cell pluripotency. We have previously reported that lncRNAs are closely related to programmed cell death (PCD), which includes apoptosis, autophagy, necroptosis, and ferroptosis. Overexpression of lncRNA can suppress the extrinsic apoptosis pathway by downregulating of membrane receptors and protect tumor cells by inhibiting the expression of necroptosis-related proteins. Some lncRNAs can also act as competitive endogenous RNA to prevent oxidation, thereby inhibiting ferroptosis, while some are known to activate autophagy. The relationship between lncRNA and PCD has promising implications in clinical research, and reports have highlighted this relationship in various cancers such as non-small cell lung cancer and gastric cancer. This review systematically summarizes the advances in the understanding of the molecular mechanisms through which lncRNAs impact PCD.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1715
Author(s):  
Macus Hao-Ran Bao ◽  
Carmen Chak-Lui Wong

Hypoxia, low oxygen (O2) level, is a hallmark of solid cancers, especially hepatocellular carcinoma (HCC), one of the most common and fatal cancers worldwide. Hypoxia contributes to drug resistance in cancer through various molecular mechanisms. In this review, we particularly focus on the roles of hypoxia-inducible factor (HIF)-mediated metabolic reprogramming in drug resistance in HCC. Combination therapies targeting hypoxia-induced metabolic enzymes to overcome drug resistance will also be summarized. Acquisition of drug resistance is the major cause of unsatisfactory clinical outcomes of existing HCC treatments. Extra efforts to identify novel mechanisms to combat refractory hypoxic HCC are warranted for the development of more effective treatment regimens for HCC patients.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S730-S731
Author(s):  
Bing Bai ◽  
Zewen Wen ◽  
Zhiwei Lin ◽  
Tam Vincent H ◽  
Zhijian Yu

Abstract Background Enterococcus faecalis have been regarded as one of the leading causes of the nosocomial infections worldwide. Tigecycline (TGC) is considered as a choice of last resort for the treatment of infections caused by multidrug-resistant E. faecalis, however, the emergence of TGC non-susceptibility has posted the therapeutic challenge. Non-susceptibility in clinical strains could be due to resistance (MIC >0.5 mg/l) or heteroresistance. Therefore, this study aimed to understand the underlying molecular mechanisms of TGC resistance and heteroresistance in E. faecalis. Methods In vitro induction experiments were carried out under TGC pressure with two TGC- sensitive E. faecalis strains. Heteroresistance was evaluated by population analysis profiling (PAP) in 270 clinical TGC- sensitive E. faecalis strains. TGC susceptibility was determined by the agar dilution method. Resistance and heteroresistance mechanisms were investigated by identifying genetic mutations in tetracycline (Tet) target sites and susceptibility testing in the presence of the efflux protein inhibitors phenylalanine-arginine-β-naphthylamide (PaβN) and carbonyl cyanide m chlorophenylhydrazine (CCCP). Comparison of single nucleotide polymorphism in the whole genome between the parental isolate and two TGC-resistant strains were investigated by next-generation sequencing. Results No mutations in Tet target sites in seven TGC heteroresistant strains were present, whereas the mutations in Tet target sites of seven TGC-resistant E. faecalis were frequently found (Table 1). TGC MICs in heteroresistant strains were reduced by CCCP (Table 2). Whole genome sequencing revealed the same non-synonymous mutations and transcoding deletions in the exons of several genes encoding for various enzymes or transfer systems (Table 3). Table 1. The characteristics of the antimicrobial susceptibility, resistance mechanism of TGC-induced resistant isolates Table 2. Characteristics of clinical heteroresistant mother E. faecalis strains and heteroresistance-derived E. faecalis clones Table 3. List of mutation-related genes, amino acids and proteins by comparison of whole genome between the parental isolate and the TGC-induced resistant strains Conclusion Our data indicated that the main mechanism of TGC heteroresistance in E. faecalis might be associated with the efflux pumps. TGC resistance in E. faecalis was associated with mutations in the 16SrRNA site or 30S ribosome protein S10. The genetic mutations in several enzymes and transfer systems might also participate in the resistance development to TGC in E. faecalis. Disclosures All Authors: No reported disclosures


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 403
Author(s):  
Kgalaletso Othibeng ◽  
Lerato Nephali ◽  
Anza-Tshilidzi Ramabulana ◽  
Paul Steenkamp ◽  
Daniel Petras ◽  
...  

Humic substance (HS)-based biostimulants show potentials as sustainable strategies for improved crop development and stress resilience. However, cellular and molecular mechanisms governing the agronomically observed effects of HS on plants remain enigmatic. Here, we report a global metabolic reprogramming of maize leaves induced by a humic biostimulant under normal and nutrient starvation conditions. This reconfiguration of the maize metabolism spanned chemical constellations, as revealed by molecular networking approaches. Plant growth and development under normal conditions were characterized by key differential metabolic changes such as increased levels of amino acids, oxylipins and the tricarboxylic acid (TCA) intermediate, isocitric acid. Furthermore, under starvation, the humic biostimulant significantly impacted pathways that are involved in stress-alleviating mechanisms such as redox homeostasis, strengthening of the plant cell wall, osmoregulation, energy production and membrane remodelling. Thus, this study reveals that the humic biostimulant induces a remodelling of inter-compartmental metabolic networks in maize, subsequently readjusting the plant physiology towards growth promotion and stress alleviation. Such insights contribute to ongoing efforts in elucidating modes of action of biostimulants, generating fundamental scientific knowledge that is necessary for development of the biostimulant industry, for sustainable food security.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Tsui-Wen Chou ◽  
Nydia P. Chang ◽  
Medha Krishnagiri ◽  
Aisha P. Patel ◽  
Marissa Lindman ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disorder characterized by the death of midbrain dopamine neurons. The pathogenesis of PD is poorly understood, though misfolded and/or aggregated forms of the protein α-synuclein have been implicated in several neurodegenerative disease processes, including neuroinflammation and astrocyte activation. Astrocytes in the midbrain play complex roles during PD, initiating both harmful and protective processes that vary over the course of the disease. However, despite their significant regulatory roles during neurodegeneration, the cellular and molecular mechanisms that promote pathogenic astrocyte activity remain mysterious. Here, we show that α-synuclein preformed fibrils (PFFs) induce pathogenic activation of human midbrain astrocytes, marked by inflammatory transcriptional responses, downregulation of phagocytic function, and conferral of neurotoxic activity. These effects required the necroptotic kinases RIPK1 and RIPK3, but were independent of MLKL and necroptosis. Instead, both transcriptional and functional markers of astrocyte activation occurred via RIPK-dependent activation of NF-κB signaling. Our study identifies a previously unknown function for α-synuclein in promoting neurotoxic astrocyte activation, as well as new cell death-independent roles for RIP kinase signaling in the regulation of glial cell biology and neuroinflammation. Together, these findings highlight previously unappreciated molecular mechanisms of pathologic astrocyte activation and neuronal cell death with implications for Parkinsonian neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document