Chapter 4 The HYGEIAnet Reference Scenario

Author(s):  
Demosthenes Akoumianakis ◽  
Constantine Stephanidis
Keyword(s):  
Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 2
Author(s):  
Elisavet Koutsi ◽  
Sotirios Deligiannis ◽  
Georgia Athanasiadou ◽  
Dimitra Zarbouti ◽  
George Tsoulos

During the last few decades, electric vehicles (EVs) have emerged as a promising sustainable alternative to traditional fuel cars. The work presented here is carried out in the context of the Horizon 2020 project MERLON and targets the impact of EVs on electrical grid load profiles, while considering both grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operation modes. Three different charging policies are considered: the uncontrolled charging, which acts as a reference scenario, and two strategies that fall under the umbrella of individual charging policies based on price incentive strategies. Electricity prices along with the EV user preferences are taken into account for both charging (G2V) and discharging (V2G) operations, allowing for more realistic scenarios to be considered.


Author(s):  
Graziano Coller ◽  
Marco Schiavon ◽  
Marco Ragazzi

AbstractDue to the high density of users hosted everyday, public buildings are important producers of waste and emissions of greenhouse gases (GHGs). Public restrooms play an underrated role in waste generation and GHG emissions, especially if paper towels are used as the hand-drying method. The choice of the hand-drying method (i.e., paper towels vs. electrical hand dryers) also affects the economic balance of a public institution, involving costs for the purchase of hand-drying materials/apparatuses, energy and waste disposal. The present paper aims at evaluating the economic and environmental impact of the introduction of electrical hand dryers (alternative scenario) in place of paper towels (reference scenario) in a public building. The paper presents a solid methodology, based on a numerical experiment approach, to identify a decision criterion for establishing the economical convenience of adopting the alternative scenario in public restrooms. Key factors affecting the choice between the proposed alternatives are presented and discussed in a dedicated sensitivity analysis. From the environmental point of view, this study evaluates the impact of each scenario in terms of GHG emissions, related to multiple waste treatment options and different electric grid mixes. Based on the experimental assumptions, the method allowed concluding that the alternative scenario becomes economically convenient when the number of daily usages (N) is > 57 ± 4. The environmental convenience of the alternative scenario is visible even at N < 10. The method here described can be successfully used to support strategic decisions for cost optimization and environmental mitigation in institutional buildings.


2021 ◽  
Author(s):  
Deepthi Swamy ◽  
Apurba Mitra ◽  
Varun Agarwal ◽  
Megan Mahajan ◽  
Robbie Orvis

India is currently the world’s third-largest emitter of greenhouse gases (GHGs) after China and the United States and is set to experience continued growth in its population, economy, and energy consumption. Exploring low-carbon development pathways for India is therefore crucial for achieving the goal of global decarbonization. India has pledged to reduce the emission intensity of its gross domestic product (GDP) by 33–35 per cent relative to 2005 levels by 2030 through its Nationally Determined Contribution (NDC), among other related targets for the renewable energy and forestry sectors. Further, countries, including India, are expected to respond to the invitation of the Conference of the Parties (COP) to the Paris Agreement to communicate new or updated NDCs with enhanced ambition and long-term low-GHG development strategies for 2050. To design effective policy packages to support the planning and achievement of such climate targets, policymakers need to identify policies that can reduce GHG emissions in a timely and cost-effective manner, while meeting development-related and other national objectives. The India Energy Policy Simulator (India EPS), an open-source, system dynamics model, can enable an integrated quantitative assessment of different cross-sectoral climate policy packages for India through 2050 and their implications for key variables of interest such as emissions, GDP, and jobs. The tool was developed by Energy Innovation LLC and adapted for India in partnership with World Resources Institute. It is available for open access through a Web interface as well as a downloadable application. This technical note describes the structure, input data sources, assumptions, and limitations of the India EPS, as well as the setup and key results of its reference scenario, referred to as the business-as-usual (BAU) scenario in the model. It is intended as an update to the first technical note on the India EPS (Mangan et al. 2019) and accounts for the changes incorporated into the model since the first version.


2014 ◽  
Vol 18 (2) ◽  
pp. 407-416 ◽  
Author(s):  
I. Vandecasteele ◽  
A. Bianchi ◽  
F. Batista e Silva ◽  
C. Lavalle ◽  
O. Batelaan

Abstract. In Europe, public water withdrawals make up on average 30% and in some cases up to 60% of total water withdrawals. These withdrawals are becoming increasingly important with growing population density; hence there is a need to understand the spatial and temporal trends involved. Pan-European public/municipal water withdrawals and consumption were mapped for 2006 and forecasted for 2030. Population and tourism density were assumed to be the main driving factors for withdrawals. Country-level statistics on public water withdrawals were disaggregated to a combined population and tourism density map (the "user" density map) computed for 2006. The methodology was validated using actual regional withdrawal statistics from France for 2006. The total absolute error (TAE) calculated was proven to be reduced by taking into account the tourism density in addition to the population density. In order to forecast the map to 2030 we considered a reference scenario where per capita withdrawals were kept constant in time. Although there are large variations from region to region, this resulted in a European average increase of water withdrawals of 16%. If we extrapolate the average reduction in per capita withdrawals seen between 2000 and 2008, we forecast a reduction in average total water withdrawals of 4%. Considering a scenario where all countries converge to an optimal water use efficiency, we see an average decrease of 28%.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3485
Author(s):  
Karin J. Borgonjen-van den Berg ◽  
Jeanne H. M. de Vries ◽  
Prosper Chopera ◽  
Edith J. M. Feskens ◽  
Inge D. Brouwer

Food-based recommendations (FBR) developed using linear programming generally use dietary intake and energy and nutrient requirement data. It is still unknown to what extent the availability and selection of these data affect the developed FBR and identified problem nutrients. We used 24 h dietary recalls of 62 Kenyan children (4–6 years of age) to analyse the sensitivity of the FBR and problem nutrients to (1) dietary intake data, (2) selection criteria applied to these data and (3) energy and nutrient requirement data, using linear programming (Optifood©), by comparing a reference scenario with eight alternative scenarios. Replacing reported by estimated consumption frequencies increased the recommended frequencies in the FBR for most food groups while folate was no longer identified as a problem nutrient. Using the 10–90th instead of the 5–95th percentile of distribution to define minimum and maximum frequencies/week decreased the recommended frequencies in the FBR and doubled the number of problem nutrients. Other alternative scenarios negligibly affected the FBR and identified problem nutrients. Our study shows the importance of consumption frequencies for developing FBR and identifying problem nutrients by linear programming. We recommend that reported consumption frequencies and the 5–95th percentiles of distribution of reported frequencies be used to define the minimum and maximum frequencies.


2009 ◽  
Vol 7 (13) ◽  
pp. 33
Author(s):  
Andrés Navarro Cadavid ◽  
Carlos Andredy Ardila ◽  
Duván Javier Mejía Mateus

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258945
Author(s):  
Jemima A. Frimpong ◽  
Stéphane Helleringer

Exposure notification apps have been developed to assist in notifying individuals of recent exposures to SARS-CoV-2. However, in several countries, such apps have had limited uptake. We assessed whether strategies to increase downloads of exposure notification apps should emphasize improving the accuracy of the apps in recording contacts and exposures, strengthening privacy protections and/or offering financial incentives to potential users. In a discrete choice experiment with potential app users in the US, financial incentives were more than twice as important in decision-making about app downloads, than privacy protections, and app accuracy. The probability that a potential user would download an exposure notification app increased by 40% when offered a $100 reward to download (relative to a reference scenario in which the app is free). Financial incentives might help exposure notification apps reach uptake levels that improve the effectiveness of contact tracing programs and ultimately enhance efforts to control SARS-CoV-2. Rapid, pragmatic trials of financial incentives for app downloads in real-life settings are warranted.


2021 ◽  
Author(s):  
Sien Liu ◽  
Qinghua Ye ◽  
Jie Zhou

&lt;p&gt;Large shallow lakes globally are threatened by eutrophication, and climate change is believed to aggregate the situation. Wind, as the most important momentum source and the major contributor to consistently change the hydrodynamic patterns inside the large shallow lakes, is highly susceptible to climate change. Taihu Lake, which is the 3&lt;sup&gt;rd&lt;/sup&gt; largest shallow lake in China and pertains crucial social and economic values, is chosen in this study as an example. Due to climate change, the wind condition of Taihu Lake shows a significantly decreasing trend of wind speed and the frequency of extreme wind events. Previous studies have paid little attention to the climate change effects on wind hydrodynamics and its implications on water quality has not yet been thoroughly described. Here in this study, we use a well-calibrated and validated three-dimensional Delft3D model to investigate the spatial and temporal heterogeneity of wind induced hydrodynamics and its water quality implications with climate change. The model results give a prediction of less current speed, lower wave height and bottom shear stress compared to the reference scenario, while the three dimensionality of flow field remains. Further, water age is used to demonstrate the influence of external nutrient sources, i.e. the input from adjacent river networks in the basin. Large water ages are observed and potentially it would enhance the accumulation of nutrients and deterioration of water quality.&lt;/p&gt;


2021 ◽  
Author(s):  
Andrea Manzoni ◽  
Aronne Dell'Oca ◽  
Martina Siena ◽  
Alberto Guadagnini

&lt;p&gt;We consider transient three-dimensional (3D) two-phase (oil and water) flows, taking place at the core-scale. In this context, we aim at exploiting the full information content associated with available information of (i) the 3D distribution of oil saturation and (ii) the overall pressure difference across the rock sample, to estimate the set of model parameters. We consider a continuum-scale description of the system behavior upon relying on the widely employed Brooks-Corey model for the characterization of relative permeabilities and on the capillary pressure correlation introduced by Skjaeveland et al. (2000). To provide a transparent way of assessing the results of the inversion, we rely on a synthetic reference scenario. The latter is intended to mimic having at our disposal 3D and section-averaged distributions of (time-dependent) oil saturations of the kind that can be acquired during typical laboratory experiments. These are in turn corrupted by way of a random noise, to address the influence of experimental uncertainties. We focus on diverse scenarios encompassing imbibition and drainage conditions. We employ two population-based optimization algorithms, i.e., (i) the particle swarm optimization (PSO); and (ii) the differential evolution (DE), which enable one to effectively tackle the high-dimensionality parameters space (i.e., 12 dimensions in our setting) we consider. Model calibration results are of satisfactory quality for the majority of the tested scenarios, whereas the DE algorithm is associated with highest effectiveness.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;References&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;S.M. Skjaeveland; L.M. Siqveland; A. Kjosavik; W.L. Hammervold Thomas; G.A. Virnovsky (2000). Capillary Pressure Correlation for Mixed-Wet Reservoirs SPE Res Eval &amp; Eng 3 (01): 60&amp;#8211;67. https://doi.org/10.2118/60900-PA&lt;/p&gt;


2021 ◽  
Author(s):  
Katalin Demeter ◽  
Julia Derx ◽  
Jürgen Komma ◽  
Juraj Parajka ◽  
Jack Schijven ◽  
...  

&lt;p&gt;&lt;strong&gt;Background&lt;/strong&gt;: Rivers are important sources for drinking water supply, however, they are often impacted by wastewater discharges from wastewater treatment plants (WWTP) and combined sewer overflows (CSO). Reduction of the faecal pollution burden is possible through enhanced wastewater treatment or prevention of CSOs. Few methodological efforts have been made so far to investigate how these measures would affect the long-term treatment requirements for microbiologically safe drinking water supply under future changes.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Objectives&lt;/strong&gt;: This study aimed to apply a new integrative approach to decipher the interplay between the effects of future changes and wastewater management measures on the required treatment of river water to produce safe drinking water. We investigated scenarios of climate change and population growth, in combination with different wastewater management scenarios (i.e., no upgrades and upgrades at WWTPs, CSOs, and both). To the best of our knowledge, this is the first study to investigate this interplay. We focussed on the viral index pathogens norovirus and enterovirus and made a cross-comparison with a bacterial and a protozoan reference pathogen (Campylobacter and Cryptosporidium).&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods&lt;/strong&gt;: We significantly extended QMRAcatch (v1.0 Python), a probabilistic-deterministic model that combines virus fate and transport modelling in the river with quantitative microbial risk assessment (QMRA). To investigate the impact of climatic changes, we used a conceptual semi-distributed hydrological model and regional climate model outputs to simulate river discharges for the period 2035 &amp;#8211; 2049. We assumed that population growth leads to a corresponding increase in WWTP discharges. QMRAcatch was successfully calibrated and validated based on a four-year dataset of a human-associated genetic MST marker and enterovirus. The study site was the Danube in Vienna, Austria.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results&lt;/strong&gt;: In the reference scenario, approx. 98% of the enterovirus and norovirus loads at the study site (median: 10&lt;sup&gt;10&lt;/sup&gt; and 10&lt;sup&gt;13&lt;/sup&gt; N/d) originated from WWTP effluent, while the remainder was via CSO events. The required log reduction value (LRV) to produce safe drinking water was 6.3 and 8.4 log&lt;sub&gt;10&lt;/sub&gt; for enterovirus and norovirus. Future changes in population size, river flows and CSO events did not affect these treatment requirements, and neither did the prevention of CSOs. In contrast, in the scenario of enhanced wastewater treatment, which showed lower LRVs by 2.0 and 1.3 log&lt;sub&gt;10&lt;/sub&gt;, climate-change-driven increases in CSO events had a considerable impact on the treatment requirements, as they affected the main pollution source. Preventing CSOs and installing enhanced treatment at the WWTPs together had the most significant positive effect with a reduction of LRVs by 3.9 and 3.8 log&lt;sub&gt;10&lt;/sub&gt; compared to the reference scenario.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusions&lt;/strong&gt;: The integrative modelling approach was successfully realised. The simultaneous consideration of source apportionment and concentrations of the reference pathogens were found crucial to understand the interplay among the effects of climate change, population growth and pollution control measures. The approach was demonstrated for a study site representing a large river impacted by WWTP and CSO discharges, but is applicable at other sites to support long term water safety planning.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document