scholarly journals Non-ionic Thermoresponsive Polymers in Water

Author(s):  
Vladimir Aseyev ◽  
Heikki Tenhu ◽  
Françoise M. Winnik
2021 ◽  
Author(s):  
Maximilian Felix Toni Meier ◽  
Franck Thetiot ◽  
Narsimhulu Pittala ◽  
Ingo Lieberwirth ◽  
Cleiton Kunzler ◽  
...  

We have designed novel macromolecular coordination ligands (MCLs) by conjugation of thermoresponsive polymers based on poly(N-isopropylacrylamide) (M ̅_n around 3 to 25 kg∙mol-1) with 1,2,4-triazole coordination sites. These triazole units...


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 90
Author(s):  
Łukasz Otulakowski ◽  
Maciej Kasprów ◽  
Aleksandra Strzelecka ◽  
Andrzej Dworak ◽  
Barbara Trzebicka

Thermoresponsive polymers are a promising material for drug nanocarrier preparation, which makes the study of their aggregation in physiological conditions very important. In this paper, the thermal behaviour of the thermoresponsive polymers poly(N-isopropylacrylamide), poly(2-isopropyl-2-oxazoline-co-2-n-propyl-2-oxazoline) and poly[(2-hydroxyethyl methacrylate)-co-oligo(ethylene glycol) methyl ether methacrylate] were studied in phosphate buffer (PBS) and solutions of its salts in concentration as in PBS. The thermal response of the polymers was measured using UV-Vis and dynamic light scattering (DLS). The salts shifted the cloud point temperature (TCP) of the (co)polymers to higher values compared to the TCP of aqueous polymer solutions. In PBS and NaCl solutions, all polymers exhibited an unexpected and previously unreported transmittance profile. During heating, an additional aggregation of polymers appeared above the TCP accompanied by the formation of a precipitate. In monosodium phosphate solutions and pure water, the studied polymers showed lower critical solution temperature (LCST-type) behaviour. DLS measurements showed that a salt influenced the size of the resulting polymer particles. The sizes and stability of particles depended on the heating rate. In PBS and NaCl solutions, the size of particles in the dispersion decreased above 60 °C, and the precipitate appeared on the bottom of the cuvette. The additional aggregation of polymer and its falling out of solution may hinder the removal of carriers from the body and has to be taken into account when preparing nanocarriers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kenichi Nagase ◽  
Yuta Umemoto ◽  
Hideko Kanazawa

AbstractTemperature-responsive chromatography using thermoresponsive polymers is innovative and can control analyte retention via column temperature. Analyte elution behavior in this type of chromatography depends on the modified thermoresponsive polymer and the structure of the base materials. In the present study, we examine the effect of the pore diameter of silica beads on analyte elution behavior in temperature-responsive chromatography. Poly(N-isopropylacrylamide-co-n-butyl methacrylate) hydrogel was applied to beads of various pore sizes: 7, 12, and 30 nm. Almost the same amount of copolymer hydrogel was applied to all beads, indicating that the efficiency of copolymer modification was independent of pore size. Analyte retention on prepared beads in a packed column was observed using steroids, benzodiazepines, and barbiturates as analytes. Analyte retention times increased with temperature on packed columns of 12- and 30-nm beads, whereas the column packed with 7-nm beads exhibited decreased retention times with increasing temperature. The difference in analyte elution behavior among the various pore sizes was attributed to analyte diffusion into the bead pores. These results demonstrate that bead pore diameter determines temperature-dependent elution behavior.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 877
Author(s):  
Ingrid Zahn ◽  
Daniel David Stöbener ◽  
Marie Weinhart ◽  
Clemens Gögele ◽  
Annette Breier ◽  
...  

Anterior cruciate ligament (ACL) cell sheets combined with biomechanically competent scaffolds might facilitate ACL tissue engineering. Since thermoresponsive polymers allow a rapid enzyme-free detachment of cell sheets, we evaluated the applicability of a thermoresponsive poly(glycidyl ether) (PGE) coating for cruciate ligamentocyte sheet formation and its influence on ligamentocyte phenotype during sheet-mediated colonization of embroidered scaffolds. Ligamentocytes were seeded on surfaces either coated with PGE or without coating. Detached ligamentocyte sheets were cultured separately or wrapped around an embroidered scaffold made of polylactide acid (PLA) and poly(lactic-co-ε-caprolactone) (P(LA-CL)) threads functionalized by gas-phase fluorination and with collagen foam. Ligamentocyte viability, protein and gene expression were determined in sheets detached from surfaces with or without PGE coating, scaffolds seeded with sheets from PGE-coated plates and the respective monolayers. Stable and vital ligamentocyte sheets could be produced within 24 h with both surfaces, but more rapidly with PGE coating. PGE did not affect ligamentocyte phenotype. Scaffolds could be colonized with sheets associated with high cell survival, stable gene expression of ligament-related type I collagen, decorin, tenascin C and Mohawk after 14 d and extracellular matrix (ECM) deposition. PGE coating facilitates ligamentocyte sheet formation, and sheets colonizing the scaffolds displayed a ligament-related phenotype.


2010 ◽  
Vol 46 (10) ◽  
pp. 1631 ◽  
Author(s):  
Ning Yan ◽  
Jiaguang Zhang ◽  
Yuan Yuan ◽  
Guang-Tao Chen ◽  
Paul. J. Dyson ◽  
...  

2016 ◽  
Vol 120 (20) ◽  
pp. 4635-4643 ◽  
Author(s):  
Qilu Zhang ◽  
Lenny Voorhaar ◽  
Sergey K. Filippov ◽  
Berin Fatma Yeşil ◽  
Richard Hoogenboom

2018 ◽  
Vol 47 (3) ◽  
pp. 426-432 ◽  
Author(s):  
Sivan Yogev ◽  
Ayelet Shabtay-Orbach ◽  
Abraham Nyska ◽  
Boaz Mizrahi

Thermoresponsive materials have the ability to respond to a small change in temperature—a property that makes them useful in a wide range of applications and medical devices. Although very promising, there is only little conclusive data about the cytotoxicity and tissue toxicity of these materials. This work studied the biocompatibility of three Food and Drug Administration approved thermoresponsive polymers: poly( N-isopropyl acrylamide), poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) tri-block copolymer, and poly(lactic acid-co-glycolic acid) and poly(ethylene glycol) tri-block copolymer. Fibroblast NIH 3T3 and HaCaT keratinocyte cells were used for the cytotoxicity testing and a mouse model for the in vivo evaluation. In vivo results generally showed similar trends as the results seen in vitro, with all tested materials presenting a satisfactory biocompatibility in vivo. pNIPAM, however, showed the highest toxicity both in vitro and in vivo, which was explained by the release of harmful monomers and impurities. More data focusing on the biocompatibility of novel thermoresponsive biomaterials will facilitate the use of existing and future medical devices.


2012 ◽  
Vol 45 (18) ◽  
pp. 7535-7548 ◽  
Author(s):  
Dennis Kurzbach ◽  
Martina Schömer ◽  
Valerie S. Wilms ◽  
Holger Frey ◽  
Dariush Hinderberger

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1876
Author(s):  
Lorenzo Marsili ◽  
Michele Dal Bo ◽  
Federico Berti ◽  
Giuseppe Toffoli

Chitosan is a natural polysaccharide that is considered to be biocompatible, biodegradable and non-toxic. The polymer has been used in drug delivery applications for its positive charge, which allows for adhesion with and recognition of biological tissues via non-covalent interactions. In recent times, chitosan has been used for the preparation of graft copolymers with thermoresponsive polymers such as poly-N-vinylcaprolactam (PNVCL) and poly-N-isopropylamide (PNIPAM), allowing the combination of the biodegradability of the natural polymer with the ability to respond to changes in temperature. Due to the growing interest in the utilization of thermoresponsive polymers in the biological context, it is necessary to increase the knowledge of the key principles of thermoresponsivity in order to obtain comparable results between different studies or applications. In the present review, we provide an overview of the basic principles of thermoresponsivity, as well as a description of the main polysaccharides and thermoresponsive materials, with a special focus on chitosan and poly-N-Vinyl caprolactam (PNVCL) and their biomedical applications.


2015 ◽  
Vol 6 (8) ◽  
pp. 1300-1308 ◽  
Author(s):  
Qiongqin Mao ◽  
Kun Liu ◽  
Wen Li ◽  
Jiatao Yan ◽  
Afang Zhang

OEGylated cyclodextrin-based polymers exhibit characteristic thermoresponsiveness and switchable inclusion ability towards fluorescent dyes.


Sign in / Sign up

Export Citation Format

Share Document