Ways to Minimize Nitrogen Emissions in Agricultural Farms

Author(s):  
Mohamed E. Abd El-Hack ◽  
Ahmed E. Noreldin ◽  
Samir A. Mahgoub ◽  
Muhammad Arif
Keyword(s):  
2007 ◽  
Vol 7 (3) ◽  
pp. 103-110
Author(s):  
C. Schilling ◽  
M. Zessner ◽  
A.P. Blaschke ◽  
D. Gutknecht ◽  
H. Kroiss

Two Austrian case study regions within the Danube basin have been selected for detailed investigations of groundwater and surface water quality at the catchment scale. Water balance calculations have been performed using the conceptual continuous time SWAT 2000 model to characterise catchment hydrology and to identify individual runoff components contributing to river discharge. Nitrogen emission calculations have been performed using the empirical emission model MONERIS to relate individual runoff components to specific nitrogen emissions and for the quantification of total nitrogen emissions to surface waters. Calculated total nitrogen emissions to surface waters using the MONERIS model were significantly influenced by hydrological conditions. For both catchments the groundwater could be identified as major emission pathway of nitrogen emissions to the surface waters. Since most of the nitrogen is emitted by groundwater to the surface water, denitrification in groundwater is of considerable importance reducing nitrogen levels in groundwater along the flow path towards the surface water. An approach was adopted for the grid-oriented estimation of diffuse nitrogen emissions based on calculated groundwater residence time distributions. Denitrification in groundwater was considered using a half life time approach. It could be shown that more than 90% of the total diffuse nitrogen emissions were contributed by areas with low groundwater residence times and short distances to the surface water. Thus, managing diffuse nitrogen emissions the location of catchment areas has to be considered as well as hydrological and hydrogeological conditions, which significantly influence denitrification in the groundwater and reduce nitrogen levels in groundwater on the flow path towards the surface water.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Oskar Englund ◽  
Pål Börjesson ◽  
Blas Mola-Yudego ◽  
Göran Berndes ◽  
Ioannis Dimitriou ◽  
...  

AbstractWithin the scope of the new Common Agricultural Policy of the European Union, in coherence with other EU policies, new incentives are developed for farmers to deploy practices that are beneficial for climate, water, soil, air, and biodiversity. Such practices include establishment of multifunctional biomass production systems, designed to reduce environmental impacts while providing biomass for food, feed, bioenergy, and other biobased products. Here, we model three scenarios of large-scale deployment for two such systems, riparian buffers and windbreaks, across over 81,000 landscapes in Europe, and quantify the corresponding areas, biomass output, and environmental benefits. The results show that these systems can effectively reduce nitrogen emissions to water and soil loss by wind erosion, while simultaneously providing substantial environmental co-benefits, having limited negative effects on current agricultural production. This kind of beneficial land-use change using strategic perennialization is important for meeting environmental objectives while advancing towards a sustainable bioeconomy.


Nitrogen ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 308-320
Author(s):  
D. Nayeli Martínez ◽  
Edison A. Díaz-Álvarez ◽  
Erick de la Barrera

Environmental pollution is a major threat to public health and is the cause of important economic losses worldwide. Atmospheric nitrogen deposition is one of the most significant components of environmental pollution, which, in addition to being a health risk, is one of the leading drivers of global biodiversity loss. However, monitoring pollution is not possible in many regions of the world because the instrumentation, deployment, operation, and maintenance of automated systems is onerous. An affordable alternative is the use of biomonitors, naturally occurring or transplanted organisms that respond to environmental pollution with a consistent and measurable ecophysiological response. This policy brief advocates for the use of biomonitors of atmospheric nitrogen deposition. Descriptions of the biological and monitoring particularities of commonly utilized biomonitor lichens, bryophytes, vascular epiphytes, herbs, and woody plants, are followed by a discussion of the principal ecophysiological parameters that have been shown to respond to the different nitrogen emissions and their rate of deposition.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 931
Author(s):  
Mona Giraud ◽  
Jannis Groh ◽  
Horst H. Gerke ◽  
Nicolas Brüggemann ◽  
Harry Vereecken ◽  
...  

Grasslands are one of the most common biomes in the world with a wide range of ecosystem services. Nevertheless, quantitative data on the change in nitrogen dynamics in extensively managed temperate grasslands caused by a shift from energy- to water-limited climatic conditions have not yet been reported. In this study, we experimentally studied this shift by translocating undisturbed soil monoliths from an energy-limited site (Rollesbroich) to a water-limited site (Selhausen). The soil monoliths were contained in weighable lysimeters and monitored for their water and nitrogen balance in the period between 2012 and 2018. At the water-limited site (Selhausen), annual plant nitrogen uptake decreased due to water stress compared to the energy-limited site (Rollesbroich), while nitrogen uptake was higher at the beginning of the growing period. Possibly because of this lower plant uptake, the lysimeters at the water-limited site showed an increased inorganic nitrogen concentration in the soil solution, indicating a higher net mineralization rate. The N2O gas emissions and nitrogen leaching remained low at both sites. Our findings suggest that in the short term, fertilizer should consequently be applied early in the growing period to increase nitrogen uptake and decrease nitrogen losses. Moreover, a shift from energy-limited to water-limited conditions will have a limited effect on gaseous nitrogen emissions and nitrate concentrations in the groundwater in the grassland type of this study because higher nitrogen concentrations are (over-) compensated by lower leaching rates.


2012 ◽  
Vol 150 (1-3) ◽  
pp. 293-301 ◽  
Author(s):  
S.M. Staerfl ◽  
S.L. Amelchanka ◽  
T. Kälber ◽  
C.R. Soliva ◽  
M. Kreuzer ◽  
...  

1993 ◽  
Vol 93 (3) ◽  
pp. 255-269 ◽  
Author(s):  
Stephen R. Turns ◽  
Franklin H. Myhr ◽  
Ramarao V. Bandaru ◽  
Ehren R. Maund

OENO One ◽  
2016 ◽  
Vol 50 (2) ◽  
Author(s):  
Anthony Rouault ◽  
Sandra Beauchet ◽  
Christel Renaud-Gentie ◽  
Frédérique Jourjon

<p style="text-align: justify;"><strong>Aims</strong>: Using Life Cycle Assessment (LCA), this study aims to compare the environmental impacts of two different viticultural technical management routes (TMRs); integrated and organic) and to identify the operations that contribute the most to the impacts.</p><p style="text-align: justify;"><strong>Methods and results</strong>: LCA impact scores were expressed in two functional units: 1 ha of cultivated area and 1 kg of collected grape. We studied all operations from field preparation before planting to the end-of-life of the vine. Inputs and outputs were transformed into potential environmental impacts thanks to SALCA™ (V1.02) and USETox™ (V1.03) methods. Plant protection treatments were a major cause of impact for both TMRs for fuel-related impact categories. For both TMRs, the main contributors to natural resource depletion and freshwater ecotoxicity were trellis system installation and background heavy metal emissions, respectively.</p><p style="text-align: justify;"><strong>Conclusion</strong>: This study shows that the studied organic TMR has higher impact scores than the integrated TMR for all the chosen impact categories except eutrophication. However, the chosen TMRs are only typical of integrated and organic viticulture in Loire Valley and some emission models (heavy metal, fuel-related emissions, and nitrogen emissions) have to be improved in order to better assess the environmental impacts of viticulture. Soil quality should also be integrated to LCA results in viticulture because this lack may be a disadvantage for organic viticulture.</p><strong>Significance and impact of study</strong>: This study is among the first to compare LCA results of an integrated and an organic TMR.


Sign in / Sign up

Export Citation Format

Share Document