Use Of a New Agricultural Drought Index Within a Regional Drought Observatory

Author(s):  
A. Matera ◽  
G. Fontana ◽  
V. Marletto ◽  
F. Zinoni ◽  
L. Botarelli ◽  
...  
2020 ◽  
Vol 12 (11) ◽  
pp. 1700
Author(s):  
Yuanhuizi He ◽  
Fang Chen ◽  
Huicong Jia ◽  
Lei Wang ◽  
Valery G. Bondur

Droughts are one of the primary natural disasters that affect agricultural economies, as well as the fire hazards of territories. Monitoring and researching droughts is of great importance for agricultural disaster prevention and reduction. The research significance of investigating the hysteresis of agricultural to meteorological droughts is to provide an important reference for agricultural drought monitoring and early warnings. Remote sensing drought monitoring indices can be employed for rapid and accurate drought monitoring at regional scales. In this paper, the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices and the surface temperature product are used as the data sources. Calculating the temperature vegetation drought index (TVDI) and constructing a comprehensive drought disaster index (CDDI) based on the crop growth period allowed drought conditions and spatiotemporal evolution patterns in the Volgograd region in 2010 and 2012 to be effectively monitored. The causes of the drought were then analyzed based on the sensitivity of a drought to meteorological factors in rain-fed and irrigated lands. Finally, the lag time of agricultural to meteorological droughts and the hysteresis in different growth periods were analyzed using statistical analyses. The research shows that (1) the main drought patterns in 2010 were spring droughts from April to May and summer droughts from June to August, and the primary drought patterns in 2012 were spring droughts from April to June, with an affected area that reached 3.33% during the growth period; (2) local drought conditions are dominated by the average surface temperature factor. Rain-fed lands are sensitive to the temperature and are therefore prone to summer droughts. Irrigated lands are more sensitive to water shortages in the spring and less sensitive to extremely high temperature conditions; (3) there is a certain lag between meteorological and agricultural droughts during the different growth stages. The strongest lag relationship was found in the planting stage and the weakest one was found in the dormancy stage. Therefore, the meteorological drought index in the growth period has a better predictive ability for agricultural droughts during the appropriately selected growth stages.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2437 ◽  
Author(s):  
Mohammad Kamruzzaman ◽  
Syewoon Hwang ◽  
Jaepil Cho ◽  
Min-Won Jang ◽  
Hanseok Jeong

This study aims to assess the spatiotemporal characteristics of agricultural droughts in Bangladesh during 1981–2015 using the Effective Drought Index (EDI). Monthly precipitation data for 36 years (1980–2015) obtained from 27 metrological stations, were used in this study. The EDI performance was evaluated for four sub-regions over the country through comparisons with historical drought records identified by regional analysis. Analysis at a regional level showed that EDI could reasonably detect the drought years/events during the study period. The study also presented that the overall drought severity had increased during the past 35 years. The characteristics (severity and duration) of drought were also analyzed in terms of the spatiotemporal evolution of the frequency of drought events. It was found that the western and central regions of the country are comparatively more vulnerable to drought. Moreover, the southwestern region is more prone to extreme drought, whereas the central region is more prone to severe droughts. Besides, the central region was more prone to extra-long-term droughts, while the coastal areas in the southwestern as well as in the central and north-western regions were more prone to long-term droughts. The frequency of droughts in all categories significantly increased during the last quinquennial period (2011 to 2015). The seasonal analysis showed that the north-western areas were prone to extreme droughts during the Kharif (wet) and Rabi (dry) seasons. The central and northern regions were affected by recurring severe droughts in all cropping seasons. Further, the most significant increasing trend of the drought-affected area was observed within the central region, especially during the pre-monsoon (March–May) season. The results of this study can aid policymakers in the development of drought mitigation strategies in the future.


2021 ◽  
Author(s):  
Dimmie Hendriks ◽  
Pieter Hazenberg ◽  
Jonas Gotte ◽  
Patricia Trambauer ◽  
Arjen Haag ◽  
...  

<p>An increasing number of regions and countries are confronted with droughts as well as an increase in water demand. Inevitably, this leads to an increasing pressure on the available water resources and associated risks and economic impact for the water dependent sectors. In order to prevent big drought impacts, such as agricultural damage and food insecurity, timely and focused drought mitigation measures need to be carried out. To enable this, the detection of drought and its sector-specific risks at early stages needs to be improved. One of the main challenges is to develop compound and impact-oriented drought indices, that make optimal use of innovative techniques, satellite products, local data and other big data sets.</p><p>Here, we present the development of a Next Generation Drought Index (NGDI) that combines multiple freely available global data sources (eg. ERA5, MODIS, PCR-GLOBWB) to calculate a range of relevant drought hazard indices related to meteorological, hydrological, soil moisture and agricultural drought (eg. SPI, SPEI, SRI, SGI, VCI). The drought hazard indices are aggregated at district level, while considering the percentage area exposure of the drought impacted sector (exposure). In addition, the indices are enriched with local and national scale drought impact information (eg. online news items, social media data, EM-DAT database, GDO Drought news, national drought reports). Results are presented at sub-national scales in interactive spatial and temporal views, showing the combined drought indices and impact data.</p><p>The NGDI approach is being tested for the agricultural sector in Mali, a country with a vulnerable population and economy that faces frequent dry spells which heavily impact the functioning of the important agricultural activities that sustain a large part of the population. The computed drought indices are compared with local drought data and an analysis is made of the cross-correlations between the indices within the NGDI and collected impact data.</p><p>We aim at providing the NGDI information to a broad audience as well as co-creation of further NGDI developments. Hence, we would like to reach out to interested parties and identify collaboration opportunities.</p>


2019 ◽  
Vol 71 (1) ◽  
pp. 1604057 ◽  
Author(s):  
Zulfiqar Ali ◽  
Ijaz Hussain ◽  
Muhammad Faisal ◽  
Elsayed Elsherbini Elashkar ◽  
Showkat Gani ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 838 ◽  
Author(s):  
Ali Torabi Haghighi ◽  
Nizar Abou Zaki ◽  
Pekka M. Rossi ◽  
Roohollah Noori ◽  
Ali Akbar Hekmatzadeh ◽  
...  

Water is the most important resource for sustainable agriculture in arid and semi-arid regions, where agriculture is the mainstay for rural societies. By relating the water usage to renewable water resources, we define three stages from sustainable to unsustainable water resources: (1) sustainable, where water use is matched by renewable water capacity, ensuring sustainable water resources; (2) transitional, where water use occasionally exceeds renewable water capacity; and (3) unsustainable, with lack of water resources for agriculture, society, and the environment. Using available drought indicators (standardized precipitation index (SPI) and streamflow drought index (SDI)) and two new indices for agricultural drought (overall agricultural drought index (OADI) and agricultural drought index (ADI)), we evaluated these stages using the example of Fars province in southern Iran in the period 1977–2016. A hyper-arid climate prevailed for an average of 32% of the province’s spatio-temporal coverage during the study period. The area increased significantly from 30.6% in the first decade (1977–1986) to 44.4% in the last (2006–2015). The spatiotemporal distribution of meteorological drought showed no significant negative trends in annual precipitation during 1977–2016, but the occurrence of hydrological droughts increased significantly in the period 1997–2016. The expansion of irrigated area, with more than 60% of rainfed agriculture replaced by irrigated agriculture (especially between 1997 and 2006), exerted substantial pressure on surface water and groundwater resources. Together, climate change, reduced river flow, and significant declines in groundwater level in major aquifers led to unsustainable use of water resources, a considerable reduction in irrigated area, and unsustainability in agricultural production in the period 2006–2015. Analysis of causes and effects of meteorological, hydrological, and agricultural drought in the area identified three clear stages: before 1997 being sustainable, 1997–2006 being transitional, and after 2006 being unsustainable.


2021 ◽  
Vol 244 ◽  
pp. 106599
Author(s):  
Dong Wu ◽  
Zhenhong Li ◽  
Yongchao Zhu ◽  
Xuan Li ◽  
Yingjie Wu ◽  
...  

2020 ◽  
Author(s):  
Song Youngseok ◽  
Kim Jinbok ◽  
Park Jongun ◽  
Park Moojong

<p>Unlike natural disasters such as typhoons, torrential rains and floods, drought is a disaster caused by long-term effects as well as short-term effects. The effect of drought is caused by damage from a short period of weeks to a long period of years, which causes extensive and enormous damage to agriculture, life, society and economy. In addition, the recent climate change has affected the frequency and scale of rainfall in the global temperature, so it is necessary to prepare measures against it.</p><p>The past studies on drought have been conducted using drought indexes such as agricultural, meteorological, and hydrological methods to evaluate drought. The representative drought indexes for each drought are Palmer Drought Severity Index (PDSI), Standardized Precipitation Index (SPI), Agricultural drought is Crop Moisture Index (CMI), Crop Specific Drought Index (CSDI), Hydrological drought is Surface Drought Water Supply Index (SWSI), Reclamation Drought Index (RDI) and so on are used. However, these drought indices are only used as a method of predicting the depth of drought, and do not give the actual number of drought occurrences.</p><p>In this study, we want to determine the frequency of Mega-drought occurrences in consideration of the drought damage characteristics that occurred worldwide from 1900 to 2018. The drought damages in the world were used by EM-DAT (the Emergency Events Database) which manages disaster data in CRED (Centre for Research on the Epidemiology of Disasters). Drought damages occurred in the world from 1900 to 2018 occurred more than once/years in 146 countries. The duration of drought persistence occurred in the country continuously for at least one to 17 years. The purpose of this study is to propose the criteria for mega drought by using the past victim data in connection with the incidence frequency.</p><p>Acknowledges : This research was supported by a grant(2019-MOIS31-010) from Fundamental Technology Development Program for Extreme Disaster Response funded by Korean Ministry of Interior and Safety(MOIS).</p><div> </div>


Sign in / Sign up

Export Citation Format

Share Document