Specific Binding of cis-Platinum Compounds to DNA and DNA Fragments

Author(s):  
J. Reedijk ◽  
J. H. J. den Hartog ◽  
A. M. J. Fichtinger-Schepman ◽  
A. T. M. Marcelis
1993 ◽  
Vol 289 (2) ◽  
pp. 605-607 ◽  
Author(s):  
M Lavesa ◽  
R K Olsen ◽  
K R Fox

The sequence selective binding of [N-MeCys3,N-MeCys7]TANDEM to DNA has been studied by footprinting experiments on DNA fragments containing the self-complementary sequences CGCGATATCGCG, CGCGTATACGCG, CGCGTTAACGCG and CGCGAATTCGCG. DNAase I and micrococcal nuclease reveal drug-induced footprints with the central sequences ATAT, TATA and TTAA, but not AATT, suggesting that the ligand binds to the dinucleotide TpA. The ligand renders certain adenines hyper-reactive to diethyl pyrocarbonate. These are observed with ATAT, TATA and TTAA, but not AATT, and are located both within, and distal to, the TpA-binding sites.


2021 ◽  
Author(s):  
Samantha L. Wilson ◽  
Shu Yi Shen ◽  
Lauren Harmon ◽  
Justin M. Burgener ◽  
Tim Triche ◽  
...  

AbstractBackgroundCell-free methylated DNA immunoprecipitation-sequencing (cfMeDIP-seq) identifies genomic regions with DNA methylation, using a protocol adapted to work with low-input DNA samples and with cell-free DNA (cfDNA). This method allows for DNA methylation profiling of circulating tumour DNA in cancer patients’ blood samples. Such epigenetic profiling of circulating tumour DNA provides information about in which tissues tumour DNA originates, a key requirement of any test for early cancer detection. In addition, DNA methylation signatures provide prognostic information and can detect relapse. For robust quantitative comparisons between samples, immunoprecipitation enrichment methods like cfMeDIP-seq require normalization against common reference controls.MethodsTo provide a simple and inexpensive reference for quantitative normalization, we developed a set of synthetic spike-in DNA controls for cfMeDIP-seq. These controls account for technical variation in enrichment efficiency due to biophysical properties of DNA fragments. Specifically, we designed 54 DNA fragments with combinations of methylation status (methylated and unmethylated), fragment length (80 bp, 160 bp, 320 bp), G+C content (35%, 50%, 65%), and fraction of CpG dinucleotides within the fragment (1/80 bp, 1/40 bp, 1/20 bp). We ensured that the spike-in synthetic DNA sequences do not align to the human genome. We integrated unique molecular indices (UMIs) into cfMeDIP-seq to control for differential amplification after enrichment. To assess enrichment bias according to distinct biophysical properties, we conducted cfMeDIP-seq solely on spike-in DNA fragments. To optimize the amount of spike-in DNA required, we added varying quantities of spike-in control DNA to sheared HCT116 colon cancer genomic DNA prior to cfMeDIP-seq. To assess batch effects, three separate labs conducted cfMeDIP-seq on peripheral blood plasma samples from acute myeloid leukemia (AML) patients.ResultsWe show that cfMeDIP-seq enriches for highly methylated regions, capturing ≥99.99% of methylated spike-in control fragments with ≤0.01% non-specific binding and preference for both high G+C content fragments and fragments with more CpGs. The use of 0.01 ng of spike-in control DNA total provided sufficient sequencing reads to adjust for variance due to fragment length, G+C content, and CpG fraction. Using the known amount of each spiked-in fragment, we created a generalized linear model that absolutely quantifies molar amount from read counts across the genome, while adjusting for fragment length, G+C content, and CpG fraction. Employing our spike-in controls greatly mitigates batch effects, reducing batch-associated variance to ≤ 1% of the total variance within the data.DiscussionIncorporation of spike-in controls enables absolute quantification of methylated cfDNA generated from methylated DNA immunoprecipitation-sequencing (MeDIP-seq) experiments. It mitigates batch effects and corrects for biases in enrichment due to known biophysical properties of DNA fragments and other technical biases. We created an R package, spiky, to convert read counts to picomoles of DNA fragments, while adjusting for fragment properties that affect enrichment. The spiky package is available on GitHub (https://github.com/trichelab/spiky) and will soon be available on [email protected]


Author(s):  
S. K. Aggarwal ◽  
P. McAllister ◽  
R. W. Wagner ◽  
B. Rosenberg

Uranyl acetate has been used as an electron stain for en bloc staining as well as for staining ultrathin sections in conjunction with various lead stains (Fig. 1). Present studies reveal that various platinum compounds also show promise as electron stains. Certain platinum compounds have been shown to be effective anti-tumor agents. Of particular interest are the compounds with either uracil or thymine as one of the ligands (cis-Pt(II)-uracil; cis-Pt(II)-thymine). These compounds are amorphous, highly soluble in water and often exhibit an intense blue coloration. These compounds show enough electron density to be used as stains for electron microscopy. Most of the studies are based on various cell lines (human AV, cells, human lymphoma cells, KB cells, Sarcoma-180 ascites cells, chick fibroblasts and HeLa cells) while studies on tissue blocks are in progress.


Author(s):  
László G. Kömüves

Light microscopic immunohistochemistry based on the principle of capillary action staining is a widely used method to localize antigens. Capillary action immunostaining, however, has not been tested or applied to detect antigens at the ultrastructural level. The aim of this work was to establish a capillary action staining method for localization of intracellular antigens, using colloidal gold probes.Post-embedding capillary action immunocytochemistry was used to detect maternal IgG in the small intestine of newborn suckling piglets. Pieces of the jejunum of newborn piglets suckled for 12 h were fixed and embedded into LR White resin. Sections on nickel grids were secured on a capillary action glass slide (100 μm wide capillary gap, Bio-Tek Solutions, Santa Barbara CA, distributed by CMS, Houston, TX) by double sided adhesive tape. Immunolabeling was performed by applying reagents over the grids using capillary action and removing reagents by blotting on filter paper. Reagents for capillary action staining were from Biomeda (Foster City, CA). The following steps were performed: 1) wet the surface of the sections with automation buffer twice, 5 min each; 2) block non-specific binding sites with tissue conditioner, 10 min; 3) apply first antibody (affinity-purified rabbit anti-porcine IgG, Sigma Chem. Co., St. Louis, MO), diluted in probe diluent, 1 hour; 4) wash with automation buffer three times, 5 min each; 5) apply gold probe (goat anti-rabbit IgG conjugated to 10 nm colloidal gold, Zymed Laboratories, South San Francisco, CA) diluted in probe diluent, 30 min; 6) wash with automation buffer three times, 5 min each; 7) post-fix with 5% glutaraldehyde in PBS for 10 min; 8) wash with PBS twice, 5 min each; 9) contrast with 1% OSO4 in PBS for 15 min; 10) wash with PBS followed by distilled water for5 min each; 11) stain with 2% uranyl acetate for 10 min; 12) stain with lead citrate for 2 min; 13) wash with distilled water three times, 1 min each. The glass slides were separated, and the grids were air-dried, then removed from the adhesive tape. The following controls were used to ensure the specificity of labeling: i) omission of the first antibody; ii) normal rabbit IgG in lieu of first antibody; iii) rabbit anti-porcine IgG absorbed with porcine IgG.


2019 ◽  
Vol 476 (24) ◽  
pp. 3705-3719 ◽  
Author(s):  
Avani Vyas ◽  
Umamaheswar Duvvuri ◽  
Kirill Kiselyov

Platinum-containing drugs such as cisplatin and carboplatin are routinely used for the treatment of many solid tumors including squamous cell carcinoma of the head and neck (SCCHN). However, SCCHN resistance to platinum compounds is well documented. The resistance to platinum has been linked to the activity of divalent transporter ATP7B, which pumps platinum from the cytoplasm into lysosomes, decreasing its concentration in the cytoplasm. Several cancer models show increased expression of ATP7B; however, the reason for such an increase is not known. Here we show a strong positive correlation between mRNA levels of TMEM16A and ATP7B in human SCCHN tumors. TMEM16A overexpression and depletion in SCCHN cell lines caused parallel changes in the ATP7B mRNA levels. The ATP7B increase in TMEM16A-overexpressing cells was reversed by suppression of NADPH oxidase 2 (NOX2), by the antioxidant N-Acetyl-Cysteine (NAC) and by copper chelation using cuprizone and bathocuproine sulphonate (BCS). Pretreatment with either chelator significantly increased cisplatin's sensitivity, particularly in the context of TMEM16A overexpression. We propose that increased oxidative stress in TMEM16A-overexpressing cells liberates the chelated copper in the cytoplasm, leading to the transcriptional activation of ATP7B expression. This, in turn, decreases the efficacy of platinum compounds by promoting their vesicular sequestration. We think that such a new explanation of the mechanism of SCCHN tumors’ platinum resistance identifies novel approach to treating these tumors.


1988 ◽  
Vol 27 (04) ◽  
pp. 151-153
Author(s):  
P. Thouvenot ◽  
F. Brunotte ◽  
J. Robert ◽  
L. J. Anghileri

In vitro uptake of 67Ga-citrate and 59Fe-citrate by DS sarcoma cells in the presence of tumor-bearing animal blood plasma showed a dramatic inhibition of both 67Ga and 59Fe uptakes: about ii/io of 67Ga and 1/5o of the 59Fe are taken up by the cells. Subcellular fractionation appears to indicate no specific binding to cell structures, and the difference of binding seems to be related to the transferrin chelation and transmembrane transport differences


1975 ◽  
Vol 33 (03) ◽  
pp. 573-585 ◽  
Author(s):  
Masahiro Iwamoto

SummaryInteractions between tranexamic acid and protein were studied in respect of the antifibrinolytic actions of tranexamic acid. Tranexamic acid did neither show any interaction with fibrinogen or fibrin, nor was incorporated into cross-linked fibrin structure by the action of factor XIII. On the other hand, tranexamic acid bound to human plasmin with a dissociation constant of 3.5 × 10−5 M, which was very close to the inhibition constant (3.6 × 10−5 M) for this compound in inhibiting plasmin-induced fibrinolysis. The binding site of tranexamic acid on plasmin was not the catalytic site of plasmin, because TLCK-blocked plasmin also showed a similar affinity to tranexamic acid (the dissociation constant, 2.9–4.8 × 10−5 M).In the binding studies with the highly purified plasminogen and TLCK-plasmin preparations which were obtained by affinity chromatography on lysine-substituted Sepharose, the molar binding ratio was shown to be 1.5–1.6 moles tranexamic acid per one mole protein.On the basis of these and other findings, a model for the inhibitory mechanism of tranexamic acid is presented.


1975 ◽  
Vol 33 (02) ◽  
pp. 354-360 ◽  
Author(s):  
Heinrich Patscheke ◽  
Reinhard Brossmer

SummaryConcanavalin A (CON A) causes platelets to aggregate. A Ca++-independent effect of CON A could be separated from a main effect which depends on Ca++. The main effect probably is a consequence of the CON A-induced platelet release reaction and therefore is platelet-specific. The weak residual effect observed in the presence of Na2EDTA may be due to a similar mechanism as has been demonstrated for CON A-induced aggregations of several other normal and malignant transformed animal cells.Na2EDTA did not inhibit the carbohydrate-specific binding capacity of CON A. Therefore, Na2EDTA appears not to demineralize the CON A molecules under these experimental conditions.α-methyl-D-glucoside inhibits the Ca++-independent as well as the Ca++-dependent effect of CON A.Pretreatment by neuraminidase stimulated the platelet aggregation induced by CON A. It is possible that removal of terminal sialic acid residues makes additional receptors accessible for the binding of CON A.


1994 ◽  
Vol 72 (06) ◽  
pp. 848-855 ◽  
Author(s):  
Dzung The Le ◽  
Samuel I Rapaport ◽  
L Vijaya Mohan Rao

SummaryFibroblast monolayers constitutively expressing surface membrane tissue factor (TF) were treated with 0.1 mM N-ethylmaleimide (NEM) for 1 min to inhibit aminophospholipid translocase activity without inducing general cell damage. This resulted in increased anionic phospholipid in the outer leaflet of the cell surface membrane as measured by the binding of 125I-annexin V and by the ability of the monolayers to support the generation of prothrombinase. Specific binding of 125I-rVIIa to TF on NEM-treated monolayers was increased 3- to 4-fold over control monolayers after only brief exposure to 125I-rVIIa, but this difference progressively diminished with longer exposure times. A brief exposure of NEM-treated monolayers to rVIIa led to a maximum 3- to 4-fold enhancement of VIIa/TF catalytic activity towards factor X over control monolayers, but, in contrast to the binding studies, this 3- to 4-fold difference persisted despite increasing time of exposure to rVIIa. Adding prothrombin fragment 1 failed to diminish the enhanced VIIa/TF activation of factor X of NEM-treated monolayers. Moreover, adding annexin V, which was shown to abolish the ability of NEM to enhance factor X binding to the fibroblast monolayers, also failed to diminish the enhanced VIIa/TF activation of factor X. These data provide new evidence for a possible mechanism by which availability of anionic phospholipid in the outer layer of the cell membrane limits formation of functional VIIa/TF complexes on cell surfaces.


Sign in / Sign up

Export Citation Format

Share Document