Effects of the Friction Temperature on Steels During Sliding Tests

Author(s):  
H. Uetz ◽  
M. R. Nounou
Keyword(s):  
Author(s):  
P.N. Khopin ◽  
V.V. Grib

The analysis of tribotechnical parameters of interfaces with solid lubricating coatings based on MoS2, applied by different methods, was carried out according to the results of tests in vacuum. The surface friction temperature is calculated on the basis of the performed assessment of the load-speed characteristics of these interfaces. Based on the results of tribovacuum tests, the thermocorrelation dependence of the resource of a friction pair with solid lubricating coatings MoS2, applied by vacuum (magnetron and high-frequency) and suspension methods, on the surface friction temperature of the interface was determined. On the basis of this dependence, a method for calculating the resource of the studied tribointerfaces is proposed.


2019 ◽  
Vol 71 (7) ◽  
pp. 907-914 ◽  
Author(s):  
Shaodi Zhao ◽  
Yan Yin ◽  
Jiusheng Bao ◽  
Xingming Xiao ◽  
Zengsong Li ◽  
...  

Purpose The friction between brake pair causes an intense temperature rise on interface during braking, which affects the braking performance seriously. Therefore, building an accurate testing method for frictional temperature rise (FTR) is a prerequisite. Design/methodology/approach Facing braking conditions of automobiles, an experimental system for testing of FTR based on preset thermometry method (PTM) was established. The FTR was collected by the PTM and the variation laws as well as the cause of errors were analyzed by experiments. The deviations between tested and real temperature were corrected based on tribology and heat theories. Finally, an online prediction method for FTR was pointed out. Findings After correction, the temperature curve accords well with the laws of tribology and thermal theories. The corrected FTR at braking end point is approximately equal to the authentic temperature test by hand thermometer. Originality/value This study eliminated the hysteresis phenomenon of temperature rise sequence and lays a foundation for online accurate monitoring and warning of brake friction temperature rise. It has important theoretical and practical value for expanding the monitoring and improvement of brake performance.


2012 ◽  
Vol 479-481 ◽  
pp. 202-206
Author(s):  
Wan Hua Nong ◽  
Fei Gao ◽  
Rong Fu ◽  
Xiao Ming Han

The distribution of temperature on the rubbing surface is an important factor influencing the lifetime of a brake disc. With a copper-base sintered brake pad and a forge steel disc, up-to-brake experiments have been conducted on a full-scale test bench at a highest speed of 200 Km/h and a maximum braking force of 22.5 KN. The temperature distributions on brake disc surface have been acquired by an infrared thermal camera, and the contact pressure on the contact surface of the friction pair has been calculated by the finite element software ABAQUS. The results show that the area and thermal gradient of the hot bands increase with the increase of braking speed and braking force. The hot bands occur in priority at the radial location of r=200 mm and r=300 mm, and move radially in the braking process. The finite element modelling calculation indicates that the distribution of the contact pressure on the disc surface in radial direction is in a "U"-shape. The maximum contact pressure occur at the radial locations of r=200 mm and r=300 mm, and the minimum contact pressure occur in the vicinity of the mean radius of the disc. The conformity of contact pressure distributions with the practical temperature evolutions indicates that the non-uniform distribution of the contact pressure is the factor resulting in the appearance of hot bands on the disc surface.


Lubricants ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 59 ◽  
Author(s):  
Gregor Patzer ◽  
Mathias Woydt ◽  
Raj Shah ◽  
Curtis Miller ◽  
Philip Iaccarino

The complex nature of slip-rolling contacts in many applications such as gear tooth flanks, rolling bearings, and heavy machinery often makes determining the friction and wear properties, as well as the fatigue resistance, of tribosystems difficult. The establishment of the tribological profile of a tribocouple under high Hertzian contact pressure and under slip-rolling will allow for the measurement and comparison of friction and wear coefficients as well as slip-rolling resistance by continuously monitoring the wear rate, coefficient of friction, temperature, oil film thickness, and/or electrical contact resistance using high-resolution signal analysis (HRA). A twin disc system can provide insight into the adhesive behavior of material and lubricant products such as alternative base oils and additives, ceramics, alloys, and thin film coatings. The strength and endurance of these products are often characterized through fatigue and resistance tests, which apply high Hertzian contact pressures to the rolling contact until seizure or failure is obtained. The further observation of the formation of tribofilms on the surface of contact yields information about the reactivity and thermochemical properties of additives. This review aims to illustrate how the implementation of different screening methodologies can be used as a meaningful tool for assessing the aforementioned tribological profile properties for the development of slip-rolling tribosystems.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2892 ◽  
Author(s):  
Grzegorz Królczyk ◽  
Eugene Feldshtein ◽  
Larisa Dyachkova ◽  
Mariusz Michalski ◽  
Tomasz Baranowski ◽  
...  

In this paper, the features of the strength, fractures, and tribological behavior of metal-matrix composites based on the FeGr1 material are discussed. To improve the material properties, a mixture of SiC, Al2O3 and C nanoparticulates have been added to an iron-based matrix. The simplex lattice design method and hardness, compression, and bending tests were used to determine the mechanical properties. Scanning electron microscopy was applied for fracture features analysis. Different fracture types, mainly trans-crystalline quasi-brittle and brittle fracture or inter-granular fracture and microcracks were registered for the composites tested. Depending on the type and amount of ceramic additives, significant changes in strength, as well as in the fracture features of the metal-matrix composites (MMCs), were observed. Based on tribological tests, changes in the momentary coefficients of friction, temperature of the friction surface, and wear rate of the composites with nanoparticulates were described. An analysis of the worn surface morphology revealed changes in the wear process depending on the MMC composition. It was shown that the use of hybrid mixed additives based on hard ceramic nanoparticulates improved both strength and tribological properties of composites.


Sensor Review ◽  
2020 ◽  
Vol 40 (3) ◽  
pp. 367-375
Author(s):  
Yan Yin ◽  
Heng Zhou ◽  
Jiusheng Bao ◽  
Zengsong Li ◽  
Xingming Xiao ◽  
...  

Purpose This paper aims to overcome the defect of single-source temperature measurement method and improve the measurement accuracy of FTR. The friction temperature rise (FTR) of brake affects braking performance seriously. However, it was mainly detected by single-source indirect thermometry, which has obvious deviations. Design/methodology/approach A three-point temperature measurement system was built based on three kinds of single-resource thermometry. Temperature characteristics of these thermometry were analyzed to achieve a standard FTR curve. Two fusion-monitoring models for FTR based on multi-source information were established by artificial neural network (ANN) and support vector machine (SVM). Findings Finally, the two models were verified based on the experimental results. The results showed that the fusion-monitoring model of SVM was more accurate than that of ANN in monitoring of FTR. Originality/value Then the temperature characteristics of the three single-source thermometry were analyzed, and the fusion-monitoring models based on multi-source information were established by ANN and SVM. Finally, the accuracy of the two models was compared by the experimental results. The more suitable fusion-monitoring model for FTR monitoring was determined which would be of theoretical and practical significance for remedying the monitoring defect of FTR.


Tribologia ◽  
2017 ◽  
Vol 276 (6) ◽  
pp. 59-64
Author(s):  
Wojciech NAPADŁEK ◽  
Adam WOŹNIAK ◽  
Czesław PAKOWSKI

The article presents the results of model laboratory tests, including the measurement of temperature, friction force, and linear wear of the surface layer of samples made of grey cast iron sliding against a steel counterpart. The surface layer of the cast iron specimen was modified using ablative laser micromachining in order to change its macro- and micro-geometry. To produce regular oil micro-reservoirs in a shape of micro-channels, an Nd: YAG laser (λ = 1064 nm, ƒ = 1 – 100 kHz, E = 50 J, P = 50W) with a special focusing system was used. Comparative studies included a grey cast iron specimen subjected to conventional mechanical machining and a specimen modified by ablative laser micromachining. 41Cr4 steel with a hardness of 50 HRC was used as a counterpart. Tribological tests were run in a pin-on-disk (T-11 tribometer) test set-up. The best results in the reduction of friction, temperature, and wear were obtained for samples with oil micro-reservoirs (made of ablative laser texturing) in a shape of micro-channels covering 5% of the entire tribological contact surface.


2020 ◽  
pp. 33-36 ◽  
Author(s):  
A. Yu. Albagachiev ◽  
◽  
A. M. Keropyan ◽  
A. A. Gerasimova ◽  
O. A. Kobelev ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document