Altered Chondrocyte Gene Expression in Articular Cartilage Matrix Components and Susceptibility to Cartilage Destruction

Author(s):  
T. Kimura ◽  
K. Nakata ◽  
N. Tsumaki ◽  
K. Ono
2015 ◽  
Vol 89 (15) ◽  
pp. 8063-8076 ◽  
Author(s):  
Lara J. Herrero ◽  
Suan-Sin Foo ◽  
Kuo-Ching Sheng ◽  
Weiqiang Chen ◽  
Mark R. Forwood ◽  
...  

ABSTRACTArthritogenic alphaviruses such as Ross River virus (RRV) and chikungunya virus (CHIKV) cause large-scale epidemics of severe musculoskeletal disease and have been progressively expanding their global distribution. Since its introduction in July 2014, CHIKV now circulates in the United States. The hallmark of alphavirus disease is crippling pain and inflammation of the joints, a similar immunopathology to rheumatoid arthritis. The use of glycans as novel therapeutics is an area of research that has increased in recent years. Here, we describe the promising therapeutic potential of the glycosaminoglycan (GAG)-like molecule pentosan polysulfate (PPS) to alleviate virus-induced arthritis. Mouse models of RRV and CHIKV disease were used to characterize the extent of cartilage damage in infection and investigate the potential of PPS to treat disease. This was assessed using histological analysis, real-time PCR, and fluorescence-activated cell sorting (FACS). Alphaviral infection resulted in cartilage destruction, the severity of which was alleviated by PPS therapy during RRV and CHIKV clinical disease. The reduction in cartilage damage corresponded with a significant reduction in immune infiltrates. Using multiplex bead arrays, PPS treatment was found to have significantly increased the anti-inflammatory cytokine interleukin-10 and reduced proinflammatory cytokines, typically correlated with disease severity. Furthermore, we reveal that the severe RRV-induced joint pathology, including thinning of articular cartilage and loss of proteoglycans in the cartilage matrix, was diminished with treatment. PPS is a promising new therapy for alphavirus-induced arthritis, acting to preserve the cartilage matrix, which is damaged during alphavirus infection. Overall, the data demonstrate the potential of glycotherapeutics as a new class of treatment for infectious arthritis.IMPORTANCEThe hallmark of alphavirus disease is crippling pain and joint arthritis, which often has an extended duration. In the past year, CHIKV has expanded into the Americas, with approximately 1 million cases reported to date, whereas RRV continues to circulate in the South Pacific. Currently, there is no licensed specific treatment for alphavirus disease, and the increasing spread of infection highlights an urgent need for therapeutic intervention strategies. Pentosan polysulfate (PPS) is a glycan derivative that is orally bioavailable, has few toxic side effects, and is currently licensed under the name Elmiron for the treatment of cystitis in the United States. Our findings show that RRV infection damages the articular cartilage, including a loss of proteoglycans within the joint. Furthermore, treatment with PPS reduced the severity of both RRV- and CHIKV-induced musculoskeletal disease, including a reduction in inflammation and joint swelling, suggesting that PPS is a promising candidate for drug repurposing for the treatment of alphavirus-induced arthritis.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Xi Wang ◽  
Yujie Ning ◽  
Pan Zhang ◽  
Lei Yang ◽  
Cheng Li ◽  
...  

Clinical variables contribute to the severity of Kashin-Beck disease (KBD). However, it is unclear if there is a correlation between gene expression and clinical variables. Peripheral blood samples were collected from 100 patients with KBD and 100 healthy controls from KBD-endemic areas to identify differentially expressed genes in KBD. Correlation analysis and multiple logistic regression analysis were performed using gene expression and clinical parameters. Immunohistochemistry (IHC) was used to detect the expression of related proteins in articular cartilage tissues. Thirty-nine differentially expressed genes were identified in patients with KBD. Nine differentially expressed genes were correlated with the metacarpal length/metacarpal breadth index. FZD1 was identified as having statistical significance in establishing the regression model of clinical parameters and gene expression. FZD1 expression levels were remarkably reduced in patients with KBD. Our results indicate that FZD1 could be involved in the pathological process of phalanges tuberositas and brachydactylia and may provide new insight into the pathogenesis of articular cartilage destruction observed in patients with KBD.


2008 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
Tom Appleton ◽  
Shirine Usmani ◽  
John Mort ◽  
Frank Beier

Background: Articular cartilage degeneration is a hallmark of osteoarthritis (OA). We previously identified increased expression of transforming growth factor alpha (TGF?) and chemokine (C-C motif) ligand 2 (CCL2) in articular cartilage from a rat modelof OA (1,2). We subsequently reported that TGF? signalling modified chondrocyte cytoskeletal organization, increased catabolic and decreased anabolic gene expression and suppressed Sox9. Due to other roles in chondrocytes, we hypothesized that the effects ofTGF? on chondrocytes are mediated by Rho/ROCK and MEK/ERK signaling pathways. Methods: Primary cultures of chondrocytes and articularosteochondral explants were treated with pharmacological inhibitors of MEK1/2(U0126), ROCK (Y27632), Rho (C3), p38 MAPK (SB202190) and PI3K (LY294002) to elucidate pathway involvement. Results: Using G-LISA we determined that stimulation of primary chondrocytes with TGF? activates RhoA. Reciprocally, inhibition of RhoA/ROCK but not other signalling pathways prevents modification of the actin cytoskeleton in responseto TGF?. Inhibition of MEK/ERKsignaling rescued suppression of anabolic gene expression by TGF? including SOX9 mRNA and protein levels. Inhibition of MEK/ERK, Rho/ROCK, p38 MAPK and PI3K signalling pathways differentially controlled the induction of MMP13 and TNF? gene expression. TGF? also induced expression of CCL2 specifically through MEK/ERK activation. In turn, CCL2 treatment induced the expression of MMP3 and TNF?. Finally, we assessed cartilage degradation by immunohistochemical detection of type II collagen cleavage fragments generated by MMPs. Blockade of RhoA/ROCK and MEK/ERK signalling pathways reduced the generation of type IIcollagen cleavage fragments in response to TGF? stimulation. Conclusions: Rho/ROCK signalling mediates TGF?-induced changes inchondrocyte morphology, while MEK/ERK signalling mediates the suppression ofSox9 and its target genes, and CCL2 expression. CCL2, in turn, induces the expression of MMP3 and TNF?, two potent catabolic factors known to be involved in OA. These pathways may represent strategic targets for interventional approaches to treating cartilage degeneration in osteoarthritis. References: 1. Appleton CTG et al. Arthritis Rheum 2007;56:1854-68. 2. Appleton CTG et al. Arthritis Rheum 2007; 56:3693-705.


2006 ◽  
Vol 14 (6) ◽  
pp. 597-608 ◽  
Author(s):  
S.W. Jones ◽  
S.M.V. Brockbank ◽  
M.L. Mobbs ◽  
N.J. Le Good ◽  
S. Soma-Haddrick ◽  
...  

2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Wanli Ma ◽  
Xiaohe Wang ◽  
Chunhui Wang ◽  
Mingzhi Gong ◽  
Peng Ren

Abstract Osteoarthritis is mainly caused by a degenerative joint disorder, which is characterized by the gradual degradation of articular cartilage and synovial inflammation. The chondrocyte, the unique resident cell type of articular cartilage, is crucial for the development of osteoarthritis. Previous studies revealed that P21-activated kinase-1 (PAK1) was responsible for the initiation of inflammation. The purpose of the present study was to determine the potential role of PAK1 in osteoarthritis. The level of PAK1 expression was measured by Western blot and quantitative real-time PCR in articular cartilage from osteoarthritis model rats and patients with osteoarthritis. In addition, the functional role of aberrant PAK1 expression was detected in the chondrocytes. We found that the expression of PAK1 was significantly increased in chondrocytes treated with osteoarthritis-related factors. Increased expression of PAK1 was also observed in knee articular cartilage samples from patients with osteoarthritis and osteoarthritis model rats. PAK1 was found to inhibit chondrocytes proliferation and to promote the production of inflammatory cytokines in cartilages chondrocytes. Furthermore, we found that PAK1 modulated the production of extracellular matrix and cartilage degrading enzymes in chondrocytes. Results of the present studies demonstrated that PAK1 might play an important role in the pathogenesis of osteoarthritis.


2001 ◽  
Vol 9 (5) ◽  
pp. 447-453 ◽  
Author(s):  
L. Wei ◽  
A. Hjerpe ◽  
B.H. Brismar ◽  
O. Svensson

1973 ◽  
Vol 13 (1) ◽  
pp. 205-219
Author(s):  
M. E. J. BARRATT

The action of excess retinol on articular cartilage from growing pigs was studied in organ culture. Retinol had little or no effect on explants of articular cartilage alone, but if the explants were cut so as to include some of the marrow tissue in the invasion cavities, or were cultivated near or in contact with capsular tissue, retinol caused extensive degradation of the cartilage matrix, as indicated by loss of metachromatic staining properties. Many chondrocytes were released from their capsules and assumed a fibroblast-like form. Two types of regeneration were seen. In control explants that included part of the invasion zone, cells below the explant laid down a metachromatic matrix; in similar explants cultured in the presence of retinol, a non-metachromatic osteoid-like tissue was formed at this site. There was little recovery when retinol-treated explants were transferred to normal medium, although both osteoid and chondroid tissue were sometimes regenerated.


Sign in / Sign up

Export Citation Format

Share Document